Skip navigation

Pardee Logo International Futures at the Pardee Center

International Futures Help System

Greenhouse Effect and Climate Change

The beginning point for examining the greenhouse effect is calculation of the percentage increase in atmospheric carbon dioxide (C02PER). This figure is a percentage of the pre#industrial CO2 level, not of the total atmosphere. The model first calculates annual increase in atmospheric carbon from energy use (CARANN) and adds it to a cumulative tracking of carbon (SACARB). That increase depends on global production (WENP) in the fossil fuel categories (oil, gas and coal). The coefficients representing tons of carbon generated per barrel of oil equivalent burned (CARFUELn) multiply those fossil fuel totals (coefficients calculated from the IPCC 1995 report). The oceans and other sinks annually absorb an exogenously specified amount of atmospheric carbon (CARABR) and that retards the accumulation. Deforestation (or reforestation) has an impact via another parameter (CARFORST), the value of which was calculated using deforestation estimates from Vital Signs (Brown, Flavin, and Kane, 1996) and figures for the contribution of deforestation to CO2 emissions from the IPCC. The ultimate value was taken from Mori and Takahaashi (1997: 6). For an understanding of this process and data underlying the parameters see the report of the Intergovernmental Panel on Climate Change (IPCC) and Flavin (1996). See also Repetto and Austin (1997) for an outstanding analysis of models used to investigate climate protection.


The percentage increase in atmospheric carbon relative to pre-industrial levels (CO2PER) depends on the accumulated atmospheric level of carbon (billion tons) and the pre-industrial level of carbon in the atmosphere by weight (CARPREIN).


We can calculate the atmospheric level of carbon dioxide in parts per million (CO2PPM) from these figures, if we know the pre-industrial level of carbon dioxide in parts per million (CO2PREIN).


We can use a table function to determine the average world temperature (WTEMP) in Centigrade from the atmospheric carbon dioxide level in parts per million (based on figures provided by the IPCC).


Finally, we must compute the increase to overall energy prices (CarTaxEnPriAdd) that carbon taxes cause, because total energy demand will respond to the total price. The increase will depend on the carbon tax per fossil fuel and the production level of fossil fuels in the overall pattern of energy production.