Skip navigation

Natural Sciences & Mathematics

Faculty & Staff

Scott Pegan

Assistant Professor, Department of Chemistry and Biochemistry

Dr. Scott D. Pegan’s on-going research intent is centered on discovering new classes of drug candidates for use in antiviral, antibiotic, and cancer therapies. We use a complementary approach that utilizes advanced structural biology, biophysical and enzymatic techniques as well as the latest in high-throughput screening methodology. Our intent is to discover pharmaceuticals that are not only disease specific, but can also be developed for broad based applications.

Regulation of the Human Innate Immune System

To gain a greater understanding of the mammalian innate immune response and how it is modulated, as well as develop new therapeutic templates for emerging diseases. Our on-going intent is to investigate the anti-viral type I response through the structural and kinetic study of proteases and ligases involved in the immune response signaling pathway. Through this research a better understanding of the role these proteins play in cellular regulation of the innate anti-viral immune response will occur. Currently, we are working with a model system from Crimean-Congo Hemorrhagic Fever virus (CCHFV), which in itself is a dangerous emerging pathogen exhibited by its recent deadly outbreaks in Turkey and India. Furthermore, CCHF has spread across Asia and Africa and is present particularly in the Middle East transmission. Danger to US was highlighted in 2009 by the death of a US Soldier serving in Afghanistan by CCHFV. Recently, we resolved the first reported structure of a CCHFV protease bound to its human target in the esteemed Journal of Virology.

Discovering the Source of Genetic Disease in Adenylosuccinate Lyase Deficiency

Adenylosuccinate Lyase Deficiency is a disease of purine metabolism which affects patients both biochemically and behaviorally. The symptoms are variable and include psychomotor retardation, autistic features, hypotonia, and seizures. Although some studies of mutant ADSL enzyme activity and stability have been carried out, successfully correlating the residual enzyme activity with the severity of the disease has been met with limited success, obstructing the identification of affected individuals and treatment of the disorder. To remedy this situation, Dr. Pegan is currently collaborating with Professor David Patterson (DU, Biology) and Assistant Professor Kingshuk Ghosh (DU, Physics) to carry out a comprehensive biophysical and biochemical analysis of specific mutations that give rise to ADSL deficiency in order to develop an initial predictive model of ADSL severity. This project combines three DU faculty members’ expertise and spans three DU departments: Dr. David Patterson’s knowledge and previous pioneering DU research into ADSL deficiency, my extensive structural biology expertise that includes elucidation of the molecular mechanism behind Andersen’s Syndrome, and Dr. Kingshuk Ghosh’s computational expertise in developing predictive computation models of proteins.