Dynamic Networks of Conflictual Events: The Mexican Criminal Conflict
Cassy L. Dorff

This is an early draft. Please do not circulate.
cassy.dorff@du.edu

April 16, 2015

Abstract

I present an aggregated analysis on the evolution of armed conflict in Mexico. The criminal war in Mexico is extremely complex: Drug Trafficking Organizations, citizens, government agents, amongst others, are all relevant actors within the dynamic evolution of the conflict. Existing research, however, typically ignores the interdependencies inherent to these networks. Using a new collection of machine-coded event data, I generate conflict networks for each year from 2004 to 2010. In doing so, I make three major contributions. First, I offer insights into the potential promise and pitfalls of using machine-coded data for country-level analysis. Next, after cleaning and improving upon the original data, I generate dynamic yearly networks, which include a wide variety of violent-related actors. Importantly, I demonstrate how these networks capture the independent nature of the Mexican conflict and present new insights, such as how government coordination changes in response to cartel violence over time. Finally, I use a latent space approach to uncover previously unobservable violence between government actors, criminal groups, and civilians. This research design serves as a platform for future research to investigate the effects of other major events—such as mass protests—on the evolution of armed conflict.
Network analysis is a critical tool for capturing dependencies inherent to the development of social phenomenon. The concept of social network analysis began as early as the 1930s with Jacob Moreno’s *Who Will Survive?* and has developed into a rich and diverse field. In Political Science, network analysis has now been utilized to study a diverse range of topics: trade, intergovernmental organizations, sanctions, internal conflict, political behavior.\(^1\) Yet, unfortunately, a majority of studies in Political Science still rely on the standard dyadic framework. To understand the rise and fall of internal conflicts and global crises, it is incumbent upon researchers move beyond infrequently updated count data towards measures indicating which actors commit which violent actions, and at what time. This kind of data is often beyond the scope of social scientists’ resources. However, combining new efforts in machine learning with the structural insights gained through network approaches could provide an egress from these limitations.\(^2\)

The possibility for data to be effectively and frequently harvested from a wide collection of international news outlets carries powerful potential.

In this paper, I adopt a network approach to map the evolution of violence in the Mexican criminal conflict. To begin, I use area-expertise to identify key problems in the algorithms which generate machine-coded event data and provide solutions for efficient improvements. I then demonstrate the utility of machine-coded event data for conflict analysis at the country level using the Mexican case. Next I construct a dynamic, evolving network which represents actors related to the conflict during 2004-2010. Last, I demonstrate how the latent space approach reveals relationships in the data that are not directly observable from newspaper reports. In doing so, I highlight how dependencies captured by the network approach reveal unobserved relationships between key actors and create a platform for future research on the relationship between civilian efforts and the evolution of conflict. Through this process, I set the foundation for future research to answer the question: can civilians influence the evolution of armed conflict?

\(^1\)For examples, see Dorussen and Ward (2010), Cao (2009), Cranmer, Heinrich and Desmarais (2014) and for an overview of network analysis in Political Science see Ward, Stovel and Sacks (2011).

\(^2\)An early example of such data and methods is the KEDS project (Schrodt, Davis and Weddle 1994).
Data’s Day: The Potential of Machine-Coded Event Data

Before explaining the creation of network data for the Mexican conflict, I provide a brief overview of machine-coded data in political science. I specifically compare the processes behind machine-coded and human-coded data. I then explain how area-experts can work with machine-coded data to provide new insights for improvement. Political scientists have long relied on text documents, such as historical accounts, newspapers, and biographies, to collect data on their subjects. Today, this process regularly requires hundreds of thousands of dollars in resources to employ teams of graduate and undergraduate students to read information and hand-code it into spreadsheets. To do so, the team relies on the creation of a codebook, a selection of rules that create a uniform system for human coders to code information into the required format for quantitative analysis. This process is not unlike that used for machine-coded data in the sense that a general set of rules is required to parse through large bodies of text, delineating which parts of the text are related to the subject of interest, and which parts reveal the political story we seek to explain. One of the biggest differences between machine- and human-coding is that machine-coding can be done quickly and efficiently, enabling researchers to study important political events that are unfolding today rather than only collect data on events that occurred decades ago. Incorporating machine-coding into the political science methods “tool box” enhances the abilities of human-coders to produce accurate data and eliminates political scientists’ reliance on massive funding support for large-scale text analysis.

Although machine-coding lacks the careful intellect of the human mind and may never be able to replicate a human-coder’s careful reading and ability to detect culturally specific nuances in the text, it is a valuable tool for enhancing researchers’ data collection efforts. For these tools to become more standard in research on conflict, political scientists must refine these tools for our own purposes. One key way of doing this is to combine regional expert knowledge with advancements in machine-coding. Automated text methods are often not in the wheelhouse of area experts or field researchers; instead, it is typically
the case that computationally intensive researchers are not in the same group as those
doing interviews in the field. It is this intersection between field experts’ regional knowl-
edge and automated text analysis that holds great potential for advancement. In concept,
I join these two approaches together by focusing on a single country-case and utilizing
both expert knowledge and machine-coded methods to produce a new set of event data.³

The Mexican Case

The Mexican case is the key country case for this study. The internal war in Mexico
is a criminal conflict, driven by territorial disputes over trafficking routes and land and
collusion between government officials and Drug Trafficking Organizations (DTOs). Drug
trafficking is not a new phenomenon but over the last decade it has has been at the root
of a complex conflict affecting all levels of Mexican society. After the fall of the Colum-
bian cartels in the 1990s, the landscape of violence related to drug trafficking completely
shifted in Mexico as cartels gained new territorial control. Since this time, Mexican drug
cartels have become the largest foreign supplier of methamphetamine and marijuana to
the United States, effectively dominating the drug market. In fact, estimates claim that
the drug trade employs over half a million people and generates roughly 4% of Mexico’s
annual GDP.⁴

Although Mexican drug cartels have controlled the drug trade for decades, it was not
until the 2006 election of Felipe Calderón that drug-related violence began to soar and
civilians found themselves under fire. In 2006, Calderón became president and ushered in
a new policy against the cartels. With support from the United States, the Mexican gov-
ernment initiated a massive campaign to combat drug-related violence. Violence soared
and between 2006 and 2011 and homicides nearly tripled from 10,452 to 27,213.⁵ Sending
armed actors into an already armed, violent, and competitive situation, Calderon’s

³For a complete discussion on the “promise and pitfalls” of automatic content analysis methods see
Grimmer and Stewart (2013).
⁴Shirk (2011)
⁵According to Mexico’s National Statistics Institute (INEGI).
strategy became known as a failure. It did not address the fundamental needs of civilians or establish trusted local institutions where citizens could seek support in the realms of justice and security. Instead, these policies complicated the security situation even more and created an unstable environment for reporters, government officials, and civilians.

The failure of “Calderón’s War” is partially attributable to the fact that DTOs are complex, with overlapping rivalries, family histories, splintered subgroups, and territorial disputes that drive their violent methods of political action. DTOs are also engaged in extensive corruption networks across different levels of the government and throughout the Mexican territory. The influx of federal troops into areas of high criminal activity added further complication to pre-existing corruption. Because police in Mexico receive low pay (about $9,000 to $10,000 a year), their loyalty can often be bought by cartels; however, when bribery doesn’t work, cartels routinely punish government officials with violence. Since combat and corruption between federal troops and cartels began, over forty mayors and numerous government officials have been murdered while increasing numbers of missing persons have been reported across Mexico as a result of cartels’ increasing use of kidnapping. Government corruption, civilian victimization, and a silenced media are severe problems deeply embedded in the conflict.

Because of the cartels’ brutal methods of punishment and gain, journalists and other forms of citizen representatives have been hesitant to report on these events. Journalists have not only been afraid to report out of fear that they might be punished; in fact, they have been targeted and killed numerous times. In 2010, Carlos Santiago, an intern photographer for the Mexican newspaper El Diario, based in Ciudad Juarez, was shot and killed. This was the second journalist from El Diario to be targeted. The other was Armando Rodríguez, a writer who worked the police beat and was killed in front of his own home. Following these deaths, the newspaper’s editor drafted a plea to drug traffickers asking why they were being targeted. The article was published on the front page of the paper. Then, on April 28, 2012, Regina Martínez, a journalist for the national news

6 Nathaniel (2013)
7 For a full interview with the editor see Gladstone (2010).
outlet Proceso, was found dead in her home in Xalapa, Veracruz. This series of murders is indicative of a larger phenomenon across Mexico. According to the International Press Institute and the Mexican journalists’ group “Periodistas de a Pie,” 103 journalists have been killed between 2000-2015 and 25 have disappeared. Since 2010, Mexico has been considered as deadly for journalists as Iraq; yet, these crimes continue with impunity. The Mexican case thus presents a relevant, timely, and difficult case for measuring the evolution of nuanced relationships between different violent actors. This study describes how the investigation of these relationships is possible.

Data Challenges in The Mexican Case

The quality of data on the Mexican criminal conflict remains mixed and generally suffers from underreporting. We know that there have been several key actors in this conflict over the years, including the Gulf Cartel, Juarez Cartel, La Familia Michoacana, Los Zetas, Sinaloa Cartel, and the Tijuana Cartel. However, because Mexican drug cartels are often in conflict with one another and infiltrated by government officials, it is difficult to attribute responsibility for homicides or other violent events to one cartel or actor versus another. Although the noisiness of this data might seem daunting, it presents an opportunity for researchers to explore how they may improve data and knowledge about violent situations in contexts where it is often dangerous to do the costly on-the-ground “legwork” that is generally necessary to accrue such information.

At present, the majority of data on violence in Mexico is based on homicide rates. Homicide data is produced from four main sources: Mexico’s National Institute of Statistics and Geography (INEGI), the National System of Public Security (SNSP), the Mexican Federal Government, and La Reforma. In the beginning of the conflict (typically demarcated by Calderón’s assumption of the Presidency), national newspapers carried death counts related to drug violence. *La Reforma* continues to maintain drug-related homicide data; however, transparency behind the methodology of this data collection remains uncertain. It is not known, for example, how the newspaper decides whether a homicide is
drug-related or not. Mexico’s INEGI has data based on death certificates, which allows one to acknowledge the manner of death (such as bullet wound). This data, however, is unable to attribute which homicides are linked to crime and which are unrelated. The National System of Public Security also has crime data based on local prosecutor reports, but its reliability is questionable due to the mixed incentives for governments to accurately report information. Finally, the federal government also has released data known as the “Database of Alleged Homicides Related to Organized Crime.” This database has information on executions and violence against authorities. Altogether, these data present several difficulties: first, they are not updated in real-time. To better understand the heterogenous evolution of civil conflict, researchers need to be able to describe conflict dynamics as they unfold. A further, major criticism is that these data do not further our understanding about who is directly or indirectly responsible for these crimes. 8

Acknowledging the shortfalls of pre-existing data, my analysis improves upon existing data by providing cleaned actor event data. While I can only provide a rough estimation of actors involved in each conflictual event, this is a considerable advancement from the current status quo of knowing little to no information about which actors are engaged in which events in Mexico. 9

ICEWS Data and The Mexican Criminal Conflict

The primary motivation for this study is to leverage machine-coded reports to construct a network of armed actors that represents conflict over time in Mexico. In order to construct this network study, I use the ICEWS actor-coded event data. The ICEWS event data is part of a larger project designed to operate as a crisis warning system for policymakers. 10 This database has enabled policymakers and researchers to forecast

8This information summarizes an article will fuller details on the subject in *Letras Libras*. See Ley (2012). Melissa Dell uses this government data to assess whether or not PAN victories divert drug traffic to alternative routes predicted by the shortest paths in a networked trafficking model. The aim of Dell (2011), however, is not to create actor-based event networks.

9The only other data similar to this format is from a project of machine-coded data of spanish newspapers created by Javier Osorio and Alejandro Reyes. This data is not yet publicly available.

10For a summary, see O’Brien (2010).
conflictual events around the world.11 The machine-coded event data are gleaned from natural language processing of a continuously updated harvest of news stories, primarily taken from FactivaT,M, an open source archive of news stories from over 200 sources around the world. The baseline event coder is called JABARI, a java variant of TABARI (Text Analysis By Augmented Replacement Instructions) which has been developed by Philip Schrodt and colleagues.12 This approach combines a “shallow parsing” technology of prior coders with a richer exploitation of syntactic structure.13

The models create each data point by obtaining three components of the news story: the sender of the event (i.e., who initiated the action), the receiver or target of this action, and then the event type itself. I subsetted this data according to relevant “violent” cameo codes in order to gain access to all events relating to any armed actors such as rebels, insurgents, government, and the police. These events, in essence, capture any type of violent conflict between different actors. The event type itself is coded according to the Conflict and Mediation Event Observation (CAMEO) ontology.14 The main distinguishing feature of CAMEO is its use of mediation related event codes. CAMEO does not assume that a meeting is a peaceful interaction, for example, but is able to decipher whether meetings between actors are related to mediation, or negotiation. CAMEO also includes four categories for violence (structural violence, unconventional violence, conventional force, and massive unconventional force) as well as a rich system of sub-categories.

To begin to understand how to leverage the ICEWS data for country-level network analysis, I have taken a subset of data from the larger ICEWS corpus. I constructed a SQL query to gain data subbed according to all four “violent” cameo codes as well as any actions related to all armed actors such as rebels, insurgents, government, and the police. Through the process of reviewing and cleaning the ICEWS data in preparation for my analysis, I’ve encountered two key problems with the data. The first problem relates to the

11Ward, Metternich, Dorff, Gallop, Hollenbach, Schultz and Weschle (2013)
12(see \url{http://eventdata.psu.edu/})
13This has increased accuracy (precision) from 50\% to over 70\%, as demonstrated in a series of ongoing (informal) evaluations of its output by human graders. Peak human coding performance is reported to be around 80\% (King and Lowe 2003).
14See Gerner, Schrodt and Yilmaz (2009) for the full summary of the project.
vague nature of the actor names in the data, which I improve upon via manual re-coding. The second problem I identify incentivizes ICEWS programmers to improve the parsing algorithm used in the creation of the original data. This original raw, deduplicated, data from 2004-2010 contains 187 observations relating to events between armed actors. While there are many unique actor names, the bulk of these descriptions are likely too vague for network construction. For example, the majority of cases relating to criminal violence use descriptors such as: “Armed Gang,” “Armed Opposition,” “Attacker,” “Hitman,” “Drug Gang,” “Armed Band,” and “Criminal.” A number of other cases have actor names such as “Men” or “Citizens” as well as Military descriptors. There are unique actor names available, but these are a redundant list of general actor names such as shown in Table 1. This would seem to suggest that the original actor names in the data are not fine grained enough to construct a cogent network over time. For example, the Gulf Cartel is reported several times, but the bulk of the reports on actors related to criminal events are listed as “criminals.”

Table 1: Number of cases for select drug-related actors in raw ICEWS data

<table>
<thead>
<tr>
<th>Actor Name</th>
<th>Number of Cases as Sender</th>
<th>Number of Cases as Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armed Gang</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>Armed Band</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Armed Opposition</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Attacker</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Criminal</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Drug Gang</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Hitman</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>21</td>
</tr>
</tbody>
</table>

The second major issue of concern relates to the number of conflictual events in the data. Surprisingly, the highest number of conflictual events in a given month is 12. This is much lower than we would expect. These events are unable to tell us about the intensity of the event itself. One event could capture 100 deaths and another, only 1. While these results are in part a product of machine-coded newspaper stories in that one story is equivalent to one event, the result is also a function of the algorithm used to parse stories into events. At present, only the first few lines of each individual story is used to
create an event, yet a singular story can potentially contain counts of deaths, a sublist of events, or other nuanced data of interest. After manually reviewing the data, I found that oftentimes news stories are not individual stories but are instead a bulletin or list of conflict stories from a given region.

An example is shown below in which I highlight when there is the start of a new story imbedded with the original listed story. As is visible, this one story actually contains 5 violent events within 3 different Mexican states. States are typically denoted by all capital letters. In this case, the states are Sonora, Chihuahua, and Nuevo Leon.

The following is a selection of crime, narcotics, and security highlights from regional press along Mexico’s northern border on 30 May: OSC map of Mexico’s northern border SONORA Sonora Governor Praises Calderón’s Fight Against Crime – Hermosillo Critica Periodismo en Sonora reports that during a recent National Conference of Governors Sonora Governor Eduardo Bours endorsed President Felipe Calderón’s proposal to create a new model to fight organized crime. He also stressed that federal, state, and municipal authorities must join efforts, regardless of political affiliation, in order to be successful in this endeavor. On behalf of the governors, Bours praised President Calderón’s determination to purge institutions that fail to protect the population and issued a call to fight corruption.[Hermosillo Critica Periodismo en Sonora (Internet Version-WWW) in Spanish – Daily from Hermosillo, Sonora State. Root URL as of filing date: http://www.critica.com.mx] Armed Group Attacks Municipal Police Station – Nogales El Diario de Sonora reports that on 29 May, a group armed with fragmentation grenades and high caliber weapons attacked the Public Security Secretariat of the San Pedro Municipality in Nuevo Leon, injuring at least five policemen. The report adds that this incident occurred despite the arrival of 150 Federal policemen and even though the Army continues patrolling the metropolitan area. [Nogales El Diario de Sonora (Internet Version-WWW) in Spanish– Daily from Nogales, Sonora State. Root URL as of filing date: http://www.eldiariodesonora.com.mx] CHIHUAHUA Two Police-men Killed in Ciudad Juarez – Chihuahua Tiempo La Noticia Digital reports the murder of two policemen identified as Enrique Martinez and Israel Chairez, in Ciudad Juarez. The report adds that more than 70 bullets were fired at the policemen, who were inside an official vehicle. [Chihuahua Tiempo La Noticia Digital (Internet Version-WWW) in Spanish – Daily from Chihuahua, Chihuahua State. Root URL as of filing date: http://www.tiempo.com.mx] NUEVO LEON Governor Announces New Strategies against Crime – Monterrey El Porvenir reports that Governor Natividad Gonzalez Paras has announced that agreements have been signed with federal and state authorities to implement new strategies to fight organized crime. Gonzalez Paras urged the communities and media to cooperate. "A new phase in the fight against organized crime will begin in the State of Nuevo Leon, especially in
the metropolitan area of Monterrey and zones used as routes for drug traffic-
ing,” he said. [Monterrey El Porvenir (Internet Version WWW) in Spanish – Daily from Monterrey, Nuevo Leon State. Root URL as of filing date: http://www.elporvenir.com.mx] Man Murdered in Monterrey – Monterrey El Porvenir reports that unidentified men in two cars shot and killed Eugenio Arevalo Garza, 41, in Ancir, southern Monterrey on 29 May. Jesus Martinez Gonzalez Duque, 36, who was accompanying him, was seriously wounded. The report notes that this was the 74th murder this year. Police Chiefs Summoned to Urgent Meeting – Monterrey El Porvenir reports on an urgent meeting of police chiefs with State Public Security Secretary Antonio Garza Garcia to discuss the new actions to be taken to reinforce security after the attack on the San Pedro Police Station. OSC found no fileworthy material in the follow-
ing sources: Mexicali La Cronica de Baja California, Tijuana El Sol de Tijuana, Ciudad Juarez El Diario, Monterrey El Norte, Reynosa El Manana de Reynosa, Tampico Milenio Diario de Tampico.

To improve on these issues, I subset the data to include the raw text available from the larger ICEWS database. Then, using a subset of cases from 2004-2010, I reviewed each individual case. This task includes two main goals: to label events as they relate to specific drug cartel actors in the area and to address aggregation problems in the data. In addition, I coded for duplicate cases. I identified that this data has fewer duplication issues than previously found in other ICEWS data (such as protests) but has a number of complex aggregation and parsing problems.

After manually recoding the data, the number of observations increases by 105 cases. This demonstrates that there is likely a high pay-off in reconfiguring the algorithm employed for parsing the data to search for more than one available city name in a given news story. In many cases, a higher number of listed city names signals a bulletin of events, rather than one conflictual event. This suggests that the algorithm needs to be adapted to include a “check” which searches for whether one or more state names match a pre-existing list of Mexican state names. At present, the algorithm searches only the first few lines of the story and then stops, thus attributing the event to whichever state name is first listed. Once it is identified, it then codes the event under this regional name and moves on. If, however, the algorithm is altered to search for whether the text contains one or more of these regional names, it can then identify which text stories are actually a nested series of events rather than a singular event. Adding this fixed search procedure
to the deductive parsing methods currently employed would enhance the accuracy of the
data overall by recording a higher, more accurate number of events, as well as increase the
variation of location. Figure 2 depicts the shortfalls in the original raw ICEWS data.15

In addition to correcting for the number of conflictual events over time, I also correct
for the vague coding descriptors found in the original data. To do this, I read the stories
and coded whether a specific criminal group, cartel, or cartel member was mentioned. I
then code the new actors' names and list any relevant actor involved in the conflictual
event. A variety of other news sources, blogs, and area expert knowledge were used to
complete this new set of actor codings. If I could not locate any resources that allowed
me to identify which cartel, or actor, was involved in the event, I utilized a pre-existing
data set containing the locations of cartels over time. This data set was created by
Viridiana Rios and Michele Coscia and records locations of cartels down to the municipal
level. An example of the territorial changes for the Sinaloa Cartel are shown in Figure 1.16
Exploiting online newspapers and blogs, they develop a mechanism that uses unambiguous
query terms to classify the areas in which criminal organizations operate.

15After reviewing the raw data manually, it is clear that typically state and municipality names are
only used in reference to other conflictual events, not in reference to the same story about one event.
A caveat here, which remains to be investigated further, is whether or not this pattern is unique to the
Spanish language newspapers and Mexican reporting, or whether it replicates across country contexts.
So far, it seems the problem operates in a similar structure in the Chinese context.

16Maps and data provided by Viridiana Rios, which can be accessed online, see Coscia and Rios (2012).
Figure 1: Sinaloa Cartel’s territorial movements from 2006-2010
Table 2 shows the newly coded actor names for actor types. The final data set improves the data by providing a richer picture both in terms of the number of events captured, as well as the relevant actors. The new data reveals a maximum of 26 conflictual events in a given month compared to the previous 13. The new data has a total count of 308 unique events compared to the former 187 original cases. Also, the data better reflects spikes in violence during the time periods when cartels were engaged in some of the heaviest and deadliest territorial disputes. Take, for example, the spike in the data between 2007 and 2008 shown in Figure 2, and then again the higher levels of violence from 2008 to 2009. The spike around mid-2007 is present in both the original data and newly re-coded data, though the severity of the jump is more accurately depicted by the new data.

![Conflictual Events Over Time](image)

Figure 2: Original raw ICEWS data compared to updated, re-coded event data for the time period 2004-2010. The orange line represents the updated data, the grey line reflects original machine-coded data.

The trajectory of the data between 2008 and 2009, however, differs significantly. In the original data it would seem that during this time violence is only slightly higher than before the 2007 spike. With the new data we are able to see that violence is much higher than the pre-2007 levels and seems to be following an increasing pattern. Perhaps most
importantly, this new data allows for the creation of network data that allows future research to explore how other political events of interest influence the evolution of this network.

Table 2: List of updated actor names 2004-2010

<table>
<thead>
<tr>
<th>Actor Names</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Army</td>
<td>13</td>
</tr>
<tr>
<td>Beltran-Leyva Cartel</td>
<td>12</td>
</tr>
<tr>
<td>Business</td>
<td>1</td>
</tr>
<tr>
<td>Citizen</td>
<td>62</td>
</tr>
<tr>
<td>City government</td>
<td>7</td>
</tr>
<tr>
<td>Federal government</td>
<td>2</td>
</tr>
<tr>
<td>Federal police</td>
<td>35</td>
</tr>
<tr>
<td>Gulf cartel</td>
<td>13</td>
</tr>
<tr>
<td>Indigenous</td>
<td>2</td>
</tr>
<tr>
<td>Juarez cartel</td>
<td>12</td>
</tr>
<tr>
<td>La Familia</td>
<td>15</td>
</tr>
<tr>
<td>Los Zetas</td>
<td>15</td>
</tr>
<tr>
<td>Military</td>
<td>9</td>
</tr>
<tr>
<td>Municipal government</td>
<td>6</td>
</tr>
<tr>
<td>Municipal police</td>
<td>40</td>
</tr>
<tr>
<td>Navy</td>
<td>2</td>
</tr>
<tr>
<td>Sinaloa cartel</td>
<td>13</td>
</tr>
<tr>
<td>Special forces</td>
<td>2</td>
</tr>
<tr>
<td>State government</td>
<td>5</td>
</tr>
<tr>
<td>State police</td>
<td>16</td>
</tr>
<tr>
<td>Tijuana cartel</td>
<td>3</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>308</td>
</tr>
</tbody>
</table>
Creating a Conflict Network in Mexico

In the final stage of the analysis, I create sociomatrices for each year of the cleaned data. These sociomatrices can be thought of as a summary of interactions between all actors involved in conflictual events within a year. Given that there are \(n \) actors in a year I construct an \(n \times n \) sociomatrix \(Y \). The number of conflictual dyadic interactions for any actor \(i \) and \(j \) is simply the number of events between those two actors during each given year. The resulting matrix is an undirected, symmetric matrix, as represented below.

\[
\begin{bmatrix}
 \text{actor}_i & \text{actor}_j & \text{actor}_k & \text{actor}_l & \text{actor}_m \\
 \text{actor}_i & 0 & 2 & 0 & 0 & 0 \\
 \text{actor}_j & 2 & 0 & 0 & 2 & 1 \\
 \text{actor}_k & 0 & 0 & 0 & 0 & 4 \\
 \text{actor}_l & 0 & 2 & 0 & 0 & 4 \\
 \text{actor}_m & 0 & 1 & 4 & 4 & 0 \\
\end{bmatrix}
\]

These matrices reveal a variety of interesting dynamics in the data, as shown in the network graphs of Figure 3, Figure 4, and Figure 5. First, Figure 3 shows the network graph for the first two years of the data. Beginning as early as 2004 to 2005, there is a substantial increase in the number of actors in the network. We observe that “Citizens” has a high degree in both networks or, rather, that the Citizen node is linked to a high number of other nodes within the group. In both of these networks we also see that the municipal police are the most heavily involved in these conflictual events, whereas other levels of government, such as the federal police, play a minor role in this time period.

These dynamics shift in 2006 and 2007, shown in Figure 4. Here we see that both federal agencies and municipal forces are active in the conflict. Citizens are also entangled in these events, and the number of total actors increases from 12 in 2005 to 16 in 2006. There is a strong triad forming between citizens, federal police, and municipal police. We also observe a jump in the number of cartels involved in the network, as new actors such as La Familia Michoácana, the Mexican Mafia, and the military begin to take part.
In the conflict. Notably, this network also shows that the federal police and municipal police are now both highly active. This reflects a change in the government policy at that time. By 2006 Calderón was elected president and implemented a militarized strategy, sending federal police and troops into the most contested regions. By 2007, the network has 18 actors and we see that the relationships become more complex as cartels begin to interact with one another. This sufficiently reflects what we now know to be true: following Calderón’s 2006 efforts, violence increased due to grueling competition between newly fragmented cartels.

In 2008, similar dynamics are in motion, but it is difficult to decipher the various roles played by the different levels of government. Earlier, both federal and municipal governments seem similarly involved, but by 2008 and 2009 the municipal government has a broader connectivity to diverse actors while the federal police seems to become more limitedly engaged with the Sinaloa Cartel. Overall, density increases across these networks overtime. Finally, the years 2008 and 2009 demonstrate how often citizens are caught in the mix of the violence. A consistent link across networks is that of civilians who seem to be caught in the crosshairs of much of the violence.

To further assess how different levels of government change their role in the network over time, Figure 6 presents the eigenvalue centrality for each actor. Eigenvector central-
Figure 4: The evolution of the Mexican criminal conflict, 2006-2007. Orange nodes are government actors, blue represents civilian actors and green corresponds to criminal organizations. The links (grey lines) are weighted by the number of conflictual events for that year.

Eigenvector centrality is calculated by assessing how well connected an actor is to the other actors of the network. Specifically, those with the highest eigenvector centrality are well-connected to other actors who are also well-connected across the network. In this case we can consider an actor with high eigenvector centrality to be a key player in the conflict.

Figure 5: The evolution of the Mexican criminal conflict, 2008-2009. Orange nodes are government actors, blue represents civilian actors and green corresponds to criminal organizations. The links (grey lines) are weighted by the number of conflictual events for that year.

Figure 6 reveals an interesting story of coordination between different levels of government. In 2004 both the municipal police and the federal police have similar levels of eigenvector centrality. However, in 2007 the federal police have a higher centrality, indicating a stronger connection to other actors in the network.
centrality. In 2005 they both decrease, with a larger decrease for the municipal police. In 2006 we see that both actors have very high centrality, indicating a deep involvement in the conflict. This reflects the Calderón strategy: sending federal forces into local areas to help bolster security enforcement and combat the cartels. We then see these two actors diverge. Federal police stay highly central in the network in 2007 while the municipal forces seem to back down. At this year these two actors experience the biggest gap in centrality, signaling that coordination between the two levels of governments decreases as federal forces take over combat operations relative to municipal security forces.

By 2008, we see a stark shift as municipal forces are once again involved in the conflict while federal forces seem to back down. This is particularly interesting because at this time it becomes well known to the public and to the government that Calderón’s strategy has largely failed, causing more violence rather than stemming it. Figure 6 shows that after federal forces are very active from 2006-2007, in 2008 they then recede and the municipal police become more active in the network. Finally, the year 2009 shows closer centrality scores than 2008 and 2007, signaling that perhaps these two levels of government begin to cooperate again.

Without the re-structuring of the event data into networks we would not be able to

Figure 6: Eigen centrality at the yearly level (2004-2009) for both municipal police and federal police
see the ways in which different levels of governments interact over time. This approach offers a more complete picture of these dynamics than has previously been possible and enables future research to examine what factors influence government coordination within the network.

Latent Space Analysis

A further analysis of these networks allows us to answer questions about the probability of interaction between actors in a network. While there are several approaches to social network analysis, I employ the latent space approach. Latent space approach is most useful when the main goal is to understand the role of individual actors in the network. Specifically, the latent space approach can identify interactions that are unobserved in the raw data. This approach is presented by Hoff, Raftery and Handcock (2002) and has been used in political science in several applications.¹⁷

The essential idea of the latent space is to capture third-order dependence. A common example involves relationships within a triad \(i, j, k \). If we know that \(i \) considers \(j \) a friend and \(j \) is a friend of \(k \), then the probability that \(k \) will also be a friend of \(i \) is likely to be higher than for a random person outside of this triad, since \(i \) and \(k \) are at least indirectly connected in the friendship network by virtue of their separate linkages to \(j \). Thus, information about the relationships in the first two dyads of a triad can usually reveal something about the relations in the third dyad. Third-order dependence, or the “unobserved,” latent social space then becomes a highly useful concept. The latent space can be thought of as a probability space, whereby observation of two links, \(i-j \) and \(j-k \), suggests that \(i \) and \(k \) are not too far away from each other in this social space and therefore are also likely to have a link between them. Since third-order dependence is an expression of the underlying probability of a link between two actors, we do not observe the complete set of all of these network characteristics, but we can infer them from the pattern of dyadic

¹⁷For examples regarding political conflict see Dorff and Ward (2013) or Metternich, Dorff, Gallop, Weschle and Ward (2013)
linkages. If we can map out the latent positions of each actor in the “social space,” we can then assume that the ties in the network are conditionally independent.

Formally, if we are interested in modeling an $n \times n$ sociomatrix that contains dyadic data, we might do so with a typical linear regression approach:

$$y_{ij} = \beta' x_{i,j} + \epsilon_{i,j}. \quad (1)$$

While this approach is certainly common, it assumes the errors, $\epsilon_{i,j}$ are independent. In employing the General Bilinear Mixed Effects modeling (GBME) approach, we alter the assumption of the errors and instead assume that the errors $\{\epsilon_{i,j} \neq j\}$ have a covariance that is exchangeable under identical permutations of the indices i, j. We then assume normality, which implies that the residuals can be represented as a linear random-effects model with sender (a_i) and receiver (b_j), and dyadic y_{ij} effects:

$$
\begin{bmatrix}
\epsilon_{ij} \\
\gamma_{i,j} \\
\gamma_{j,i}
\end{bmatrix}
\sim N
\left(
\begin{bmatrix}
a_i \\
b_i \\
0
\end{bmatrix},
\begin{bmatrix}
\sigma_a^2 & \sigma_{ab} \\
\sigma_{ba} & \sigma_b^2 \\
0 & 0
\end{bmatrix}
\right)
\sim N
\left(
\begin{bmatrix}
\sigma_\gamma^2 & \rho \sigma_\gamma^2 \\
\rho \sigma_\gamma^2 & \sigma_\gamma^2
\end{bmatrix}
\right)
\quad (2)
$$

This allows us to estimate the following moments:

$$
E(\epsilon_{ij}^2) = \sigma_a^2 + \sigma_b^2 + \sigma_\gamma^2
$$
$$
E(\epsilon_{i,j}\epsilon_{j,i}) = \rho \sigma_\gamma^2 + 2\sigma_{ab}
$$
$$
E(\epsilon_{i,j}\epsilon_{i,k}) = \sigma_a^2
$$
$$
E(\epsilon_{i,j}\epsilon_{k,j}) = \sigma_b^2
$$
$$
E(\epsilon_{i,j}\epsilon_{k,i}) = \sigma_{ab}. \quad (3)
$$
where \(\sigma_a^2 \) represents dependence among dyadic observations with a common sender, \(\sigma_b^2 \) represents dependence among measurements having a common receiver, and \(\rho \) is the correlation of measurements within a dyad, or reciprocity. To adjust for other types of data, such as the count data used here, the error structure can be altered so that the dyadic data are conditionally independent given the random effects but are unconditionally dependent:\(^{18}\)

\[
\theta_{i,j} = \beta' x_{i,j} + a_i + b_j + \gamma_{i,j} \\
E(y_{i,j}|\theta_{i,j} = g(\theta_{i,j}) \\
p(y_{1,2}...y_{n,n-1}|\theta_{1,2}...\theta_{n,n-1}) = \prod_{i\neq j} p(y_{i,j}|\theta_{i,j}).
\]

Following Hoff (2005), we can define the unobserved, K-dimensional vector \(z_i \) for each node \(i \) in the network. By modeling the interaction of two nodes as an increasing function of their proximity in the latent space, we include patterns of transitivity, balance, and clusterability into the network. Formally, we can incorporate this into the model by adding the inner product \(z_i'z_j \) to the linear predictor:

\[
\epsilon_{ij} = a_i + b_j + \gamma_{i,j} + z_i'z_j.
\]

I calculate latent positions for all actors in each yearly network. I will focus on the 2005 results to highlight the findings from the latent analysis. In Figure 7, I compare the network generated from the raw event data to the latent space network generated from the GBME. The left panel depicts the network according to the raw, empirical data. The right panel plots the latent space positions for each actor in the network. Recall, nodes closer together in the latent space tell us that there is a high probability of interaction between these two nodes. If there is not a link drawn between two closely positioned nodes in the original network (left panel), then the latent space is likely capturing an

\(^{18}\)Where \(g(\cdot) \) is the inverse-link function. This is a summary of the full specification provided in Hoff and Ward (2004) and Hoff (2005).
unobserved link between actors (right panel).

In the empirical network (left panel) the placement of the nodes are not meaningful; only the links in between the nodes are of interest. In latent space, however, the placement of these is extremely meaningful and represent the aforementioned probability space. Placing the two graphs side by side yields an easy visual comparison between the information provided by the raw data and those insights gained from the latent space.

In 2005, shown in Figure 7, we observe clear clusters of actors in the latent space. In the empirical network, on the left, we see that civilians are caught in many violent events; yet, in this network the link between citizens and state police is weak in comparison to the other ties. The clustering in the latent network, however, suggests that the state police and citizens are likely involved in more conflictual events than is observed in the raw data. We see a similar story for the Sinaloa Cartel in the empirical network, where we observe a link between the Sinaloa Cartel and the federal government, but the latent positions then reveal a triadic structure between the Sinaloa Cartel, the army, and the federal government. This signals a high probability of interaction between these three actors. This finding tells us that the army is likely involved in violent events with the Sinaloas, despite the fact that this link is not reported in the data. Interestingly, the latent space also shows that this triadic cluster is least likely to interact with citizens, the Gulf Cartel, and the state police. This is noteworthy in that it suggests that at this time federal actors were more involved in managing disputes with the Sinaloas—a widespread criminal organization—while state police were more involved in conflict with the Gulf Cartel, which was a more regionally concentrated organization during this period. In 2005 the Sinaloa Cartel was in control of much of the Veracruz region, but had a widespread influence across Mexico. This was a year of great influence for the Sinaloa Cartel as they eliminated competition, primarily in the areas of the Arizona border region. During this time they became a key target of federal level armed agencies, a reality which is captured by the latent network.

The latent space also distinguishes a cluster between the municipal police, Tijuana Cartel, and city government. This is especially noteworthy because the raw data only
reveals a link between the Tijuana Cartel and citizens, yet the latent space tells a fuller story whereby the Tijuana Cartel has the highest probability of interaction with the municipal police and city government. In 2005 the Tijuana Cartel concentrated almost all of its operations in Baja California, drawing the attention of local government security groups. The latent space analysis suggests that the main government actors involved in conflict with the Tijuana Cartel were indeed local governments, not federal entities.

Finally, these clusters tell us a broader story about government coordination. During this time period, we can see that those government actors that have the highest probability of interaction are at the same level of government, i.e., the federal government is likely to coordinate with the army; the municipal police is likely to be involved in the same events as the city government; and the special forces are most likely to interact with the federal police. By assessing the dependencies in the data, the latent space demonstrates changes in cooperation and conflict in a way that cannot be identified by the original network data alone.

Figure 7: A comparison between the empirical network and the latent space in 2005. The left panel presents the original data network and right panel plots actors in the latent space. In both graphs, orange nodes are government actors, blue nodes represent a civilian actor, and green nodes are criminal organizations. Actors closer together in the latent space have a higher probability of interaction.

Overall, these results show that the authorities should be cooperating with one another...
more than is evident in the actual raw stories from the ICEWS data. The distance between authorities in the latent network shows that this is likely true. Particularly in Figure 7 we see that the authorities are fairly spread out, clustered nearest to armed actors in four different groups. Here, the latent space is able to tell us not just about unobserved conflict, but about unobserved cooperation between authorities.

Conclusions and Future Research

By restructuring original raw ICEWS data, I provide original data and demonstrate the utility of using network analysis to map the criminal conflict in Mexico. I examine the ways in which this process can be improved upon for future iterations, and the benefit of using generalized bilinear mixed effects models to reveal hidden information about the original data itself. This provides a major improvement on pre-existing data and generates future avenues of research on how political events—such as protests and elections— influence the evolution of conflict networks.

There are several main conclusions to draw from this study. First, there are important takeaways for future research regarding the Mexican conflict itself. At present, the future of the Mexican criminal conflict is indeterminate. Civilian death counts remain high, and it is unclear whether government strategies are working. This study presents key findings about cooperation between different levels of government and highlights the ways in which this coordination changes over time. Questions regarding why these changes occur remain unanswered. The original motivation of this study was to create a platform for future research to explore whether civilian actions influence conflict at an aggregated level. With the inclusion of data on protests events, I can now directly test this relationship. I can model whether or not mass protest campaigns in one time period effect activity in the network during the next time period. There are, however, other lines of inquiry that this study can support. In the last few weeks, the Mexican government has captured several key leaders from the cartels. Recently in the northeastern state of Monterrey, the leader of Mexico’s notorious Zetas drug cartel was captured during a raid. The Zetas, a cartel
originally formed as the armed wing of the Gulf Cartel, has now become one of the most technologically sophisticated and brutal cartels in the region. How will the arrest of this criminal leader affect violence between the Zetas and other cartels? Or how do these government strategies impact violence involving civilians? Critically, this study sets the stage to test the conditions under which violence between specific sets of actors increases or decreases.

Second, this study makes a significant data contribution: this data approach can enhance the broader study of civil conflict. Using area-expertise to improve machine-coded data produces a replicable strategy across countries throughout the world. Machine-coded data allows for this kind of cross-cutting replicability, enabling researchers to rely on similar news sources in different regions, employ consistent methods of parsing and cleaning, and create national-level dynamic data as I have done here. The implications for this are notable: thus far in political science, country-level data is often limited by its uniqueness, i.e., researchers focus on regional data sets with details about a specific pre-determined set actors and related events (such as the Armed Conflict Location & Event Data Project (ACLED) data project). Larger projects such as the Uppsala Conflict Data Program (UCDP) data collection project are focused only on armed conflict, and are updated with less frequency. The analysis shown here demonstrates that this kind of data can provide critical and timely information on crisis events.

Finally, this study shows how the creation of network data, and particularly the use of latent space models, can actually identify meaningful connections between actors that are not directly observable in the original data. This approach provides information about unobserved conflict and cooperation—a critical advancement in an age of media bias and underreporting of events in violent contexts. In this case, I show that while the raw data does capture the general ebb and flow of the Mexican drug war, the latent space analysis shows a richer and more complex picture of how cooperation and conflict changes.

20 For a discussion of both ACLED and UCDP see Eck (2012).
21 There are efforts at Duke’s Wardlab to create similarly fine-grained data in other regions such as China.
over time. Of particular importance, I demonstrate how different levels of government cooperate at different stages of the conflict. I also show which government entities are most likely combat which cartels. For example, my findings for 2005 reveal that the Army was the most likely actor to face conflict with the Sinaloa Cartel, despite that this direct link is not reported in the original data. When these dependencies in the data are ignored, researchers cannot deeply investigate how, and why, violent actors change behavior over time. As the promise and value of a frequently updated and detailed machine-coded dataset remains high, future work should build upon the insights found in the creation of network data and the use of latent space models. Utilizing these approaches allows researchers to track critically important events quickly and effectively, and to produce knowledge that can support efforts by civilians, governments, activists, and policymakers to deescalate conflicts.
References

Gladstone, Brooke. 2010. “Mexico’s El Diario Pleads with Cartels.”.

URL: http://www.onthemedia.org/story/132920-mexicos-el-diario-pleads-with-drug-cartels/transcript/

Ley, Sandra. 2012. “La insuficiencia de las bases de datos.”

URL: http://www.letraslibres.com/blogs/polifonia/la-insuficiencia-de-las-bases-de-datos

Schrodt, Philip A, Shannon G Davis and Judith L Weddle. 1994. “Political science:
KEDSa program for the machine coding of event data.” *Social Science Computer Review* 12(4):561–587.

