There are 3 areas, each consisting of 4 problems. Each problem is worth 10 points. Best 3 problems out of each area will determine your score.

1. Group Theory

Problem 1.1. How many elements of order 15 are there in S_8? Find the centralizer (not just its order) of $(1, 2, 3)(4, 5, 6, 7, 8)$ in S_8.

Solution: Any element of order 15 is a product of a 3-cycle and a 5-cycle in S_8. There are therefore $m = \binom{8}{3} \cdot 2 \cdot 5! / 5$ such elements.

Since all elements of order 15 are conjugate to $\sigma = (1, 2, 3)(4, 5, 6, 7, 8)$, the orbit of $(1, 2, 3)(4, 5, 6, 7, 8)$ under conjugation has size m. The centralizer C of σ is the stabilizer of σ under conjugation, and it has therefore size $8! / m = 15$.

The subgroup H generated by σ is of order 15. Since $\sigma^k \sigma = \sigma \sigma^k$, we see that $H \leq C$, and thus, in fact, $C = H$. □

Problem 1.2. Let G be a non-abelian group of order p^3, where p is a prime. Show that $Z(G) = G'$ is a subgroup of order p, and that $G/Z(G) = \mathbb{Z}_p \times \mathbb{Z}_p$.

Solution: Fact 1: p-groups are nilpotent

Fact 2: nilpotent groups have nontrivial center

Fact 3: If H is a group such that $H/Z(H)$ is cyclic then H is commutative.

Fact 4: In a group H, H' is the smallest normal subgroup such that G/G' is abelian.

Since G is nilpotent, it has nontrivial center, i.e., $|Z(G)| = p, p^2, p^3$. But $|Z(G)| = p^3$ implies $Z(G) = G$, a contradiction. Hence $|Z(G)| = p, p^2$. When $|Z(G)| = p^2$ then $|G/Z(G)| = p$ and hence $G/Z(G)$ is cyclic, a contradiction using Fact 3. Thus $|Z(G)| = p$. Then $G/Z(G)$ is of order p^2, not cyclic by Fact 3. Thus $G/Z(G)$ is the only other group of order p^2, namely $\mathbb{Z}_p \times \mathbb{Z}_p$.

Now, $G/Z(G) = \mathbb{Z}_p \times \mathbb{Z}_p$ is abelian, and hence $G' \leq Z(G)$. This leaves us with $G' = 1$ or $G' = Z(G)$, since $|Z(G)| = p$. But $G' = 1$ implies that $G/G' = G$ is abelian, a contradiction. □

Problem 1.3. Show that every group of order 1995 = 3 · 5 · 7 · 19 is solvable. (Hint: First show that such a group has a normal subgroup of order 19.)

Solution: Denote by $r_p(G)$ the number of Sylow p-subgroups of a group G.

Let G be the group in question. Since $r_{19}(G) \equiv 1 \pmod{19}$ and $r_{19}(G) \leq 3 \cdot 5 \cdot 7 = 105$, the possibilities are 1, 20, 39, 58, 77, 96. But non of these divides 105, except 1. Hence there is a unique, thus normal Sylow 19-subgroup H. Now, $H \cong \mathbb{Z}_{19}$ is solvable, and $K = G/H$ is of order 105. It suffices to show that K is solvable.

By counting, the choices for $r_7(K)$ are 1 or 15, and the choices for $r_5(K)$ are 1 or 21. Assume that $r_7(K) = 15$ and $r_5(K) = 21$. Any two distinct Sylow 7-subgroups intersect trivially (being isomorphic to \mathbb{Z}_7), and thus their union covers $15 \cdot (7 - 1) = 90$ elements of order 7. Similarly, the union of all Sylow 5-subgroups covers $21 \cdot (5 - 1) = 84$ elements of order 5. But $90 + 84 > 105$, a contradiction. Thus either $r_7(K) = 1$ or $r_5(K) = 1$. □
Assume that \(r_7(K) = 1 \). Then \(K \) has a normal subgroup \(N \) of order 7 (hence solvable), and \(F = K/N \) is of order \(3 \cdot 5 \). Thus \(F \) has a unique Sylow 5-subgroup \(S \) (solvable), and since \(F/S \) is of order 3, it is also solvable.

The case \(r_5(K) = 1 \) is analogous.

Problem 1.4. We say that an abelian group \(G \) has property \(P \) iff the following holds: for every subgroup \(H \) of \(G \), \(G/H \) is isomorphic to a subgroup of \(G \).

Let \(G \) be a finitely generated abelian group. Show that \(G \) has property \(P \) if and only if \(G \) is finite.

Solution: By the fund. thm. for fin. gen. abelian groups we have \(G = (\mathbb{Z})^n \times \mathbb{Z}_{p_1^{r_1}} \times \cdots \times \mathbb{Z}_{p_m^{r_m}} \), where \(n \geq 0 \), \(m \geq 0 \), \(r_i \geq 0 \) and \(p_i \) are primes, not necessarily distinct. Clearly, \(G \) is finite iff \(n = 0 \).

Assume \(G \) is finite. Let \(H \) be a subgroup of \(G \). Then \(G/H \) is finite abelian group of order \(|G|/|H| \). The order of \(G/H \) is \(p_1^{s_1} \cdots p_m^{s_m} \) for some \(s_i \leq r_i \). It is then easy to adjust the factors of \(G \) for each prime \(p_i \) to obtain the group of desired order.

Assume \(G \) is infinite, say \(G = \mathbb{Z} \times K \) (where \(K \) could still be infinite). Let \(p \) be a prime that is not equal to any \(p_i \). Let \(H = p\mathbb{Z} \times K \). Then \(G/H \cong \mathbb{Z}_p \). Since \(G \) has no elements of order \(p \), we are done.

2. Rings

Problem 2.1. Let \(R \) be a commutative ring with 1. Let us call an ideal \(I \) of \(R \) irreducible if it is NOT possible to write \(I = I_1 \cap I_2 \), where \(I_1, I_2 \) are proper ideals of \(R \) properly containing \(I \).

(i) Let \(0 \neq x \in R \). Show that there is an ideal \(I_x \) of \(R \) maximal with respect to the property that \(x \notin I_x \).

(ii) Show that the ideal \(I_x \) from part (i) is irreducible.

(iii) Show that every prime ideal \(P \) of \(R \) is irreducible.

Solution: (i) Let \(S = \{ I \leq R, I \text{ proper; } x \notin I \} \). Since \(0 \in S \), \(S \) is not empty. When \(I_0 \leq I_1 \leq I_2 \leq \cdots \) is a chain of ideals of \(S \), then \(I = \bigcup I_i \) is a proper ideal of \(R \) (since \(1 \notin I \)), and it does not contain \(x \) (easy). By Zorn’s lemma, \(S \) has a maximal element, and that’s our \(I_x \).

(ii) Assume \(I_x = I \cap J \) in the forbidden way. Since \(I \) properly contains \(I_x \) and \(I_x \) is maximal, we have \(x \in I \). Similarly, \(x \in J \). But then \(x \in I \cap J \), a contradiction.

(iii) Let \(P = I \cap J \) in the forbidden way. Let \(r \in I \setminus P, s \in J \setminus P \). Then \(rs \in I \), \(rs \in P \). This is a contradiction with \(P \) being prime.

Problem 2.2. (i) Let \(R = \mathbb{Z}[\sqrt{-11}] = \{ m + n\sqrt{-11}; m, n \in \mathbb{Z} \} \). Find all units of \(R \). Show that \(R \) possesses an element that is irreducible but not prime.

(ii) Now let \(R = \mathbb{Z}[\sqrt{7}] \), and let \(Q \) be the field of fractions of \(R \). Show that the polynomial \(x^2 - x - 4 \) is irreducible in \(R \) but not in \(Q \).

Solution: (i) The map \(N : R \to \mathbb{Z} \) defined by \(m + n\sqrt{-11} \mapsto m^2 + 11n^2 \) is multiplicative. When \(u \in R \) is a unit, there is \(v \) such that \(uv = 1 \). Then \(N(u)N(v) = N(1) = 1 \). Thus \(N(u) = 1 \). Hence \(U(R) = \{ 1, -1 \} \).

Consider \(r = 1 + \sqrt{-11} \). Note that \(N(r) = 12 = 2 \cdot 2 \cdot 3 \). Now, it is easy to see that there are no elements of norm 3 in \(R \), so \(r \) is irreducible. Since \(r(1 - \sqrt{-11}) = 12 \), \(r \) divides 12 = 3 \cdot 4. But \(r \) does not divide 3 (compare norms) nor 4 (again compare norms). Thus \(r \) is not prime.
(ii) Let \(f(x) = x^2 - x - 4 \). We have \(f(m + n\sqrt{17}) = m^2 + 2mn\sqrt{17} + 17n^2 - m - n\sqrt{17} - 4 \). Assume \(f(m + n\sqrt{17}) = 0 \). Since \(\sqrt{17} \) is irrational, we must have \(2mn - n = 0 \) and \(m^2 + 17n^2 - m - 4 = 0 \). When \(n = 0 \) in the first equation, the second equation reduces to \(m^2 - m - 4 = 0 \), i.e., \(m = (1 \pm \sqrt{17})/2 \). This shows that \(f(x) \) factors in \(\mathbb{Q} \). It also shows that \(f(x) \) does not factor in \(R \) (because we have already found 2 roots).

Problem 2.3. Give an example of each of the following, if possible. Explain!

(i) A non-commutative domain that is not a division ring.
(ii) A finite non-commutative ring.
(iii) A unique factorization domain that is not a principal ideal domain.
(iv) A non-commutative domain that is not a division ring.
(v) A unique factorization domain that is not a principal ideal domain.

Solution: (i) \(\mathbb{H}[x] \), (ii) \(M_2(GF(p)) \), (iii) \(F[x, y] \) where \(F \) is a field, (iv) does not exist by Wedderburn Theorem.

Problem 2.4. Let \(R \) be a commutative ring with ideals \(A, B \). Let \(f : R \to R/A \times R/B \) be defined by \(f(r) = (r + A, r + B) \).

(i) Show that \(f \) is a homomorphism of rings.
(ii) Show that \(f \) is surjective if and only if \(A + B = R \).

Solution: (i) is routine.

(ii) Assume that \(f \) is surjective. Then for all \(r \in R \) there is \(t \in R \) such that \(f(t) = (r + A, B) \). Thus \(t + A = r + A, t + B = B \). Thus \(t - r = a \in A, t \in B \). Thus \(r = -a + t \in A + B \).

Conversely, assume that \(A + B = R \). Let \(r, s \in R \). Then \(r = ra + rb, s = sa + sb \) where \(ra, sa \in A, rb, sb \in B \). Thus \((r + A, s + B) = (r + A, sa + B) \). Then \(f(rb + sa) = (rb + sa + A, rb + sa + B) = (r + A, s + B) \).

3. Fields and Galois Theory

Problem 3.1. Construct a field \(F \) of order 9. Explicitly construct isomorphism of vector spaces between \(\mathbb{Z}_3 \times \mathbb{Z}_3 \) and \(F \). Explicitly construct isomorphism of groups between a group \(G \) of order 8 and \(F^* \).

Solution: Need irreducible polynomial of degree 2 over \(\mathbb{Z}_3 \), and \(f(x) = x^2 + 1 \) does the job: \(f(0) = 1, f(1) = 2, f(2) = 4 + 1 = 2 \). Let \(F = \mathbb{Z}_3[x]/(f(x)) = \{ax + b; a, b \in \mathbb{Z}_3 \} \). The isomorphism between vector spaces is \((a, b) \mapsto ax + b \). We need a primitive element. Try \(x + 1; (x + 1)^2 = x^2 + 2x + 1 = 2x, (x + 1)^3 = 2x(x + 1) = 2x^2 + 2x = 2x - 2, (x + 1)^4 = (2x - 2)(x + 1) = 2(x^2 - 1) = 2(-2) = -4 = -1 \). Hence \(x + 1 \) is a primitive element. Let \(G = \langle a \rangle, a^8 = 1 \). Then \(a^1 \mapsto (x + 1)^i \) is the needed isomorphism.

Problem 3.2. Let \(F = \mathbb{Q}, E = \mathbb{Q}(i, \sqrt{7}) \).

(i) Show that \(F \subset E \) is a Galois extension.

(ii) Find the isomorphism type of the Galois group \(\text{Gal}(E/F) \) and describe all its elements.

(iii) Draw the lattice of all intermediate fields \(F \subset K \subset E \) and describe all intermediate fields \(K \) as \(K = F(u) \) for some \(u \in E \).

Solution: I write \(Q \) instead of \(\mathbb{Q} \) here. We have \(Q \subseteq Q(\sqrt{7}) \subseteq Q(i, \sqrt{7}) \). Both extensions are of degree 2: as witnessed by \(x^2 - 7 \) and \(x^2 + 1 \). Thus \(E \) is the splitting field of \(f(x) = (x^2 - 7)(x^2 + 1) \), which is separable, and thus \(F \subseteq E \) is Galois. Let \(G \) be the Galois group. Since \(F \subseteq E \) is Galois, |\(G \)| = 4. We either have \(G = \mathbb{Z}_4 \) or
$G = \mathbb{Z}_2 \times \mathbb{Z}_2$. The latter is correct because both $Q(\sqrt{7})$ and $Q(i)$ are intermediate fields, and \mathbb{Z}_4 has only one intermediate subgroup. The automorphisms are 1, σ, τ, and $\sigma \tau$, where $\sigma(i) = i$, $\sigma(\sqrt{7}) = -\sqrt{7}$, $\tau(i) = -i$, $\tau(\sqrt{7}) = \sqrt{7}$. The intermediate field corresponding to $\langle \sigma \rangle$ is $Q(i)$. The intermediate field corresponding to τ is $Q(\sqrt{7})$. Which element is fixed by $\sigma \tau$? Well, $\sigma \tau(i \sqrt{7}) = i \sqrt{7}$. Thus the intermediate field corresponding to $\langle \sigma \tau \rangle$ is $Q(i \sqrt{7})$. □

Problem 3.3. (i) Show that every finite extension is algebraic.
(ii) Show that every simple algebraic extension is finite.
(iii) Assume that $F \subseteq E$ and $E \subseteq D$ are algebraic extensions. Must $F \subseteq D$ be algebraic?

Solution: (i) Assume $F \subseteq E$ is finite, say of dimension n. Let $e \in E$. Then e, e^2, \ldots, e^{n+1} are linearly dependent, etc.

(ii) Let $F \subseteq F(u)$ be a simple algebraic extension. Then there is $f \in F[x]$ such that $f(u) = 0$. Then $|F(u) : F| = \deg m \leq \deg f < \infty$, where m is the minimal polynomial for u.

(iii) It must be algebraic. Let $d \in D$. Since $E \subseteq D$ is algebraic, there are $e_i \in E$ such that $e(d) = 0$, where $e(x) = \sum_i e_i x^i$. Since each e_i is algebraic over F and since d is algebraic over E, $F \subseteq F(e_1) \subseteq F(e_1, e_2) \subseteq \cdots \subseteq F(e_1, \ldots, e_n) \subseteq F(e_1, \ldots, e_n, d)$ is a chain of finite extensions. Hence $F \subseteq F(e_1, \ldots, e_n, d)$ is finite, thus algebraic by (i). This means that d is algebraic over F. □

Problem 3.4. Let $A(\mathbb{Q}) = \{u \in \mathbb{C}; f(u) = 0 \text{ for some } f \in \mathbb{Q}[x]\}$. You can take for granted that $A(\mathbb{Q})$ is a field, called algebraic numbers. Show that:

(i) $A(\mathbb{Q}) = \{u \in \mathbb{C}; f(u) = 0 \text{ for some } f \in \mathbb{Z}[x]\}$,
(ii) $\mathbb{Q} \subseteq \mathbb{A}(\mathbb{Q})$ is an algebraic extension that is not finite. (Hint: Look at $2^{1/n}$ for arbitrarily large n.)
(iii) $A(\mathbb{Q})$ is countably infinite.

Solution: (i) clear denominators.

(ii) $x^n - 2$ is irreducible over \mathbb{Q} by Eisenstein. Hence $|\mathbb{Q}(2^{1/n}) : \mathbb{Q}| = n$. Since each $\mathbb{Q}(2^{1/n})$ is contained in $A(\mathbb{Q})$, we are done.

(iii) A bit of set theory does the job. There cannot be more roots than polynomials. Each polynomial has finitely many coefficients. Each coefficient is taken from a countable set. □