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1. Introduction

While the motivation for the problems discussed in this paper lie in the theory of
lattice-ordered groups, description of this connection is confined here to an Appendix.
The rest of the paper is, in its technical details, independent of that theory.

In the discussion immediately below, we define the topologies at issue, and state
our main results, Theorems 1.3 and 1.4. Section 2 comes to technical grips with
these topologies, and in Sections 3 and 4, we prove these main results. Section 5 is
the Appendix mentioned above.

Consider compact Hausdorff X. The set C(X) of real-valued continuous functions
on X, with pointwise addition ((f + g)(x) ≡ f(x) + g(x)), is an abelian group (and
much more, of course, e.g., [11], [19]).

Consider a filter base F of dense cozero-sets in X (equivalently, dense open Fσ’s).
Let Fδ = {

⋂
F′| countable F′ ⊆ F}. For each F ∈ Fδ, F is dense in X (Baire

Category Theorem) and C(X) is viewed as a subset of C(F ) via the injection C(X) 3
f 7→ f |F ∈ C(F ). Let τF (respectively, σF ) denote the compact-open (respectively
“compact-zero” topology of C(F ), traced on C(X). (Here, “zero” means: use ε = 0
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in the definition of neighborhoods. See Section 2 below.) These are Hausdorff group
topologies on C(X).

The topologies considered in this paper are τF ≡
∧
{τF | F ∈ Fδ} and σF ≡∧

{σF | F ∈ Fδ}, these meets in the lattice of topologies on C(X). These have
arisen as tools to describe epimorphisms in the category of archimedean lattice-
ordered groups with unit, and more generally, monomorphisms in the category of
spaces with Lindelöf filter (an object of which is exactly an (X,F) as above). The
connections come from [2], [3], and [12], and are described in the Appendix.

These topologies are always T1, homogeneous, inversion is continuous, and + is
separately continuous. We comment briefly on the Hausdorff property in section 2
(sometimes Yes and sometimes No). These topologies are also countably tight ([2]
and [13]), but we know hardly anything about further features of τF and σF. See [1]
and [18] for a wealth of inspiration on particular questions one might ask.

This paper is a first address (after minor remarks in [2] anyway) to the question:
When is + jointly continuous (i.e., C(X) is a topological group)? (A second “ad-
dress” will be a sequel “Topological group criterion for C(X) in compact-open-like
topologies, II” to this paper, described at the end of this section.) It is immediate
that

Proposition 1.1. If Fδ has a minimum element F0, then τF = τF0 and σF = σF0 ,
so these are group topologies on C(X).

While examples of the basic situation (X,F) are myriad, our favorite examples
(and the only ones seriously considered in this paper) have the form (βY, C), where
Y is a Tychonoff space, βY is the Čech-Stone compactification, and C denotes all
cozero-sets in βY which contain Y . These are “favorite” because here the τC is the
“epi-topology” on C(Y ) from [2] traced on the bounded functions C∗(Y ) = C(βY ),
and the epi-topology is a group topology iff τC is. For σC , the situation is similar [12].
(See the Appendix.) Then τC and σC are always Hausdorff. (See Section 2 below.)
Now, a space is called Čech-complete if it is Gδ in its Čech-Stone compactification,
or in every compacification [10]. Thus, for any (X,F), the members of Fδ are Čech-
complete, and also Lindelöf ([10], p.201). Alluding to Proposition 1.1 for the favorite
situation (βY, C), Cδ has a minimum element iff the Hewitt realcompactification υY
is Lindelöf and Čech-complete (since always υY =

⋂
C =

⋂
Cδ [11]). Thus

Corollary 1.2. If υY is Lindelöf and Čech-complete, then τC and σC are group
topologies on C(βY ).

In Theorem 2.5 below, we give a necessary and sufficient condition that a general
τF (and σF) be a group topology, and then apply this to produce the following two
theorems/examples.

Let D(α) be the discrete space of power α, and let λD(α) be D(α) with one point
adjoined, whose neighborhoods have countable complement. As above, we consider
(βY, C) for Y = D(ω1) and λD(ω1).

Theorem 1.3. (See Section 3 below.) On C(βλD(ω1)), τC and σC are group
topologies.
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(This shows that the converse of Theorem 1.2 fails: λD(ω1) is Lindelöf, but not
Čech-complete.)

Theorem 1.4. (See Section 4 below.) On C(βD(ω1)), τC and σC are not group
topologies. So too for C(βY ), for appropriate Y containing an appropriately embed-
ded copy of D(ω1).

The proofs involve, first, somewhat complicated reduction of the criterion of Sec-
tion 2 to issues of combinatorial set-theory, then resolution of those issues: for The-
orem 1.3, using the club filter on ω1 and the pressing down lemma; for Theorem 1.4,
using an Aronszajn tree. In each case, no axioms beyond ZFC are used.

Based on Corollary 1.2, Theorems 1.3, and 1.4 a primitive conjecture could be:
On C(βY ), τC (or σC) is a group topology iff υY is Lindelöf. We do not know if “υY
Lindelöf” is necessary (see Theorem 4.7 for partial result), but it is not sufficient by
our sequel to this paper:“Topological group criterion for C(X) in compact-open-like
topologies, II”. On C(βQ) (Q the rationals ), under the Continuum Hypothesis, σC is
not a group topology (and we don’t know whether CH is needed, nor anything about
τC); βQ is one among several similar examples. We don’t include those results here
because of the vagaries, the involvement of axioms beyond ZFC, and the significant
extra complications and length.

2. The topologies, and the group criteria.

This section (1) explains why τF and σF are homogeneous topologies, so that
neighborhoods at 0 suffice for most purposes, (2) describes convenient neighborhood
bases at 0, (3) formulates the topological group property in terms of these bases.
Sections 3 and 4 will analyze the group property in these terms, for the specific cases
of 1.3 and 1.4.

The topological spaces variously denoted X,Y, F, S... are Tychonoff (though not
necessarily so for the various spaces of functions). For any space S, K(S) denotes
the family of all compact subsets. We abbreviate “neighborhood” to “nbd”.

On C(S), the compact-open (co) and compact-zero (cz ) topologies have, at each
f ∈ C(S), the local nbd bases respectively

(co) all sets {g ∈ C(S)| |f − g| ≤ ε on K} (K ∈ K(S), ε ∈ (0, 1)).
(cz ) all sets {g ∈ C(S)| f = g on K} (K ∈ K(S)).

(These nbds are probably not open. A set is open iff it contains a nbd of each of
its points.)

Each of these topologies on C(S) is Hausdorff, makes C(S) (with pointwise ad-
dition) a topological group, thus is homogeneous. (For co, this is well-known: [7],
[18],... . For cz the details are similar and described in [13].)

Let S be a dense in X. The map C(X) 3 f 7→ f |S ∈ C(S) is a group embedding
of C(X) in C(S), thus the co and cz topologies on C(S), traced on C(X) (i.e., the
relative topology) are Hausdorff group topologies on C(X).

Now let X be compact Hausdorff with a filter base F of dense cozero-sets of X: we
write (X,F) ∈ LSpFi, the notation and ancestry explained in the Appendix. Each
S ∈ Fδ is dense in X (Baire Category), and is Lindelöf and Čech-complete.
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For each S ∈ Fδ, we have these topologies on C(X):

τS := the co topology on C(S), traced on C(X),
σS := the cz topology on C(S), traced on C(X).

For basic nbds of the group identity = constant function 0 in C(X), we adopt the
notation

(co) U(K, ε) = {g ∈ C(X)| |g| ≤ ε on K} (K ∈ K(S), ε ∈ (0, 1)),
(cz ) U(K) = {g ∈ C(X)| g = 0 on K} (K ∈ K(S)).

Note that S enters here through “K ∈ K(S)”.
We come to the topologies on C(X) considered in this paper. The origins are

explained in the Appendix. In the following, ∧ stands for meet (greatest lower bound)
in the lattice of topologies on C(X) (the partial order being inclusion). Basics about
such ∧’s of topologies are developed in [8].

τF := ∧{τS |S ∈ Fδ}; σF := ∧{σS |S ∈ Fδ}.

Elementary features of ∧’s imply quickly that each of τF and σF has these proper-
ties: T1; inversion (f 7→ −f), and any translation (f 7→ f+g), are homeomorphisms;
+ is separately continuous. (See [2] and [13].) Consequently, τF and σF are homo-
geneous.

Consider a general meet of topologies on a set, t = ∧i∈Iti. If ηi is a base (at p)
for ti, then {

⋃
i∈I
{Ui|Ui ∈ ηi}} is a base (at p) for t. For our τF and σF, we consider

p = 0. For example, for τF, a basic nbd of 0 has the form

(∗)
⋃
{U(KS , εS) | S ∈ Fδ}, where for each S ∈ Fδ, KS ∈ K(S) and εS ∈ (0, 1).

This can be simplified with the following crucial idea:

An adequate family (relative to F, or Fδ) is an L ⊆ K(X) for which [∀S ∈ Fδ (L∩
K(S) 6= ∅)].

Given adequate L and ε ∈ (0, 1), we set

U(L, ε) :=
⋃
{U(L, ε) | L ∈ L} ; U(L) :=

⋃
{U(L) | L ∈ L}.

Note that, in the first expression, ε does not vary.

Proposition 2.1. {U(L, ε) | L adequate and ε ∈ (0, 1)} is a base at 0 for τF;
{U(L)| L adequate} is a nbd base at 0 for σF.

Proof. For σF there is nothing to prove.
For τF: Each U(L, ε) contains a set of the form (∗) above, thus is a nbd. We need to

show that each set of the form (∗) contains a U(L, ε). Given U =
⋃
{U(KS , εS) |S ∈

Fδ} of form (∗), for each n ∈ N, let LnU = {L ∈ K(X)| U(L, 1
n ) ⊆ U}. Clearly,

L◦ =
⋃
n∈N
LnU is adequate. The point is: there is n0 such that Ln0

U is adequate, and

clearly, U(Ln0
U ,

1
n0

) ⊆ U . For if no LnU is adequate, then for every n there is Sn ∈ Fδ
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such that LnU ∩ K(Sn) = ∅. Then S = ∩Sn has L◦ ∩ K(S) = ∅, contradicting “L◦ is
adequate”. �

Here are two very simple examples of adequate families for which we have later
use.

Examples 2.2. (a) Let (X,F) ∈ LSpFi. For any p ∈
⋂

F, {{p}} is adequate.
(b) Given Y , thus (βY, C) ∈ LSpFi, let L∗ = {{p}|p ∈ βY \υY }. This L∗ is

adequate iff υY is not both Lindelöf and Čech-complete.

Proof. (a) is obvious.
(b) is because any S ∈ Cδ is Lindelöf and Čech-complete, and υY =

⋂
Cδ (as

discussed before Corollary 1.2). �

We now consider for τF and σF, first briefly, the Hausdorff property and then,
for the rest of the paper, the topological group property. Of course, the latter (and
T1) ⇒ the former (even Tychonoff). τF and σF are T1 just because the meet of
T1-topologies is again T1, but the meet of Hausdorff topologies need not be [8].

However, to present purposes:

Proposition 2.3. (a) Let (X,F) ∈ LSpFi. If
⋂

F is dense in X, then τF and σF

are Hausdorff.
(b) For any (βY, C), τC and σC are Hausdorff.

Proof. (b) follows from (a), since
⋂
C = υY is dense in βY .

We prove (a) for τF (σF being even easier).
Since τF is homogeneus, it is sufficient to separate by open sets 0 from any f 6= 0.

So given f 6= 0, we find disjoint U(L, ε) as in Proposition 2.1, with disjoint f+U(L, ε)
: Since

⋂
F is dense, there is p ∈

⋂
F where |f(p)| > 0. Let L = {{p}} and let

ε = 1
2 |f(p)|. This works. �

Proposition 2.3 is a version of 6.8 of [2], there derived as a consequence of a rather
opaque criterion that a general τF be Hausdorff. Also, in 6.5 of [2] appears an
example with τF not Hausdorff and

⋂
F = ∅. The gap between “

⋂
F = ∅” and “

⋂
F

dense” is largely unexplored, and probably the subject of a future paper similar
to the present one. (We note that there is an example in [4] of

⋂
F = ∅ and τF

Hausdorff.)
Now we turn to the topological group property of τF and σF. The criterion is just

a translation into adequate families (or maps) of the basic principle [14]: For a group
(G,+) with topology t, t is a group topology iff ∀ (basic) nbd U of 0 ∃ (basic) nbd
V of 0 (V + V ⊆ U).

The rest of this section refers to a fixed (X,F) ∈ LSpFi.

Definition 2.4. Let L,M be adequate families. L
o
≺ M (respectively L

z
≺ M)

means: ∀M1,M2 ∈ M∀ open (respectively zero− ) sets Ui ⊇ Mi, there is an L ∈ L
with L ⊆ U1 ∩ U2.

Theorem 2.5. τF (respectively, σF) is a group topology iff for every adequate L
there is an adequate M with L

o
≺M (respectively, L

z
≺M).
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Proof. (τF). Suppose τF is a group topology. Let L be adequate and ε ∈ (0, 1).
There are adequate M and δ ∈ (0, 1) with U(M, δ) + U(M, δ) ⊆ U(L, ε). This
implies L

o
≺ M: If not, there are M 3 Mi ⊆ open Ui with L * U1 ∩ U2 ∀L ∈ L.

Thus ∀ L ∃ xL ∈ L ∩ (X\(U1 ∩ U2)) = L ∩ ((X\U1) ∪ (X\U2)). Let fi ∈ C(X) have
fi(Mi) = 0 and fi(X\Ui) = 2. Then, |fi| = 0 < δ on Mi, so fi ∈ U(M, δ), while
(f1 + f2)(xL) ≥ 2 > ε for every L, so f1 + f2 /∈ U(L, ε).

Conversely: Suppose for every adequate L there is an adequate M with L
o
≺ M.

Take a basic nbd of 0, U(L, ε). Take M with L
o
≺ M, and let δ = ε

4 . Let f1, f2 ∈
U(M, δ); ∃ Mi ∈ M(|fi| ≤ δ on Mi). Let Ui = {x| |fi(x)| < 2δ}, so ∃L ∈ L with
L ⊆ U1 ∩ U2. Then, |f1 + f2| ≤ ε on L, so f1 + f2 ∈ U(L, ε).

(σF). Suppose σF is a group topology. Let L be adequate. There is adequate M
with U(M) + U(M) ⊆ U(L). This implies L

z
≺ M: If not, there are M 3 Mi ⊆

zero− set Ui with L * U1 ∩ U2 ∀L ∈ L. Thus ∀ L ∃ xL ∈ L ∩ (X\(U1 ∩ U2)).
Let fi ∈ C(X)+ have Zfi = Ui. Then |fi| = 0 on Mi, so fi ∈ U(M), while
(f1 + f2)(xL) > 0 for every L, so f1 + f2 /∈ U(L).

Conversely: Suppose for every adequate L there is an adequate M with L
z
≺ M.

Take a basic nbd of 0, U(L). Take M with L
z
≺ M. Let f1, f2 ∈ U(M); ∃ Mi ∈

M(|fi| = 0 on Mi). Let Ui = Zfi, so ∃L ∈ L with L ⊆ U1 ∩U2. Then, |f1 + f2| = 0
on L, so f1 + f2 ∈ U(L). �

In Definition 2.4 and Theorem 2.5, the open sets and the zero-sets Ui are difficult
to handle, especially for our favorites (βY, C), where a certain amount of floating
around in βY \Y is taking place. Our successes involve a third simpler condition
L ≺M, then in Sections 3,4, pushing the issues in βY down into Y .

Definition 2.6. Let L,M be adequate families. L ≺ M means: ∀M1,M2 ∈ M,
there is an L ∈ L with L ⊆M1 ∩M2.

Proposition 2.7. (a) L ≺M⇒ L
z
≺M⇒ L

o
≺M.

(b) Each of the following implies the next:
∀ adequate L ∃ adequateM (L ≺ M); σF is a group topology; τF is a group

topology.

Proof. (b) follows from (a) and 2.5.
(a): The first implication is obvious. For the second, recall that, if compact M ⊆

openU in Tychonoff X, then some f ∈ C(X) has M ⊆ Z(f) and X\U ⊆ cozf . Now
suppose L

z
≺M. TakeM3Mi ⊆ openUi, choose fi ∈ C(X) with Mi ⊆ Z(fi) ⊆ Ui,

and then choose L 3 L ⊆ Z(f1) ∩ Z(f2) ⊆ U1 ∩ U2. �

Let
∗
≺ stand for any of ≺,

z
≺,

o
≺. In considering issues of L

∗
≺ M, it sometimes

happens (e.g., Section 3) that the situation becomes clearer if we convert to adequate
maps as follows.

An adequate map is a function L : Fδ → K(X) for which ∀S(L(S) ∈ K(S)); so the
range L(Fδ) is an adequate family. For an adequate family L, we create an adequate
map by choice: ∀S ∈ Fδ(L ∩ K(S)) 6= ∅), so choose L(S) ∈ L ∩ K(S).
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For adequate maps, L
∗
≺M means, for the ranges L(Fδ)

∗
≺M(Fδ).

Then, Theorem 2.5 and Proposition 2.7 convert to exactly the same statements
for adequate maps, which we skip writing down.

3. C(βλD(ω1)) is a topological group

By the title of this section, we mean Theorem 1.3, which we shall prove. Abbreviate
D(ω1) to D. Recall λD = D ∪ λ defined in §1. This λD is Lindelöf , a P-space (Gδ-
sets are open), thus βλD is basically disconnected and thus zero-dimensional. (Refer
to [11] if needed.)

To deal with the condition L
∗
≺ M (

∗
≺ is any of ≺,

z
≺,

o
≺) for (βλD, C), we shall

(1) make a general reduction to “basic adequate families”; (2) apply (1) to (βY, C)
for Y any Lindelöf P-space; (3) further specialize (2) to Y = λD, (4) convert the
issues “L

∗
≺ M?” to a set-theoretic problem about D; (5) solve that problem, thus

proving Theorem 1.3.
For any set E, and family A of subsets of E: B is coinitial (respectively, cofinal)

in A means: B ⊆ A, and ∀A ∈ A ∃B ∈ B with B ⊆ A (respectively, B ⊇ A).
We shall create the “basic adequate families” referred to above by combining a

coinitial subfamily S of Fδ (every Fδ contains an S ∈ S) with, for each S ∈ S,
a cofinal subfamily K0(S) of K(S) (every compact set in S is contained in a K ∈
K0(S)).

Lemma 3.1. Let (X,F) ∈ LSpFi. Suppose S is coinitial in Fδ, and ∀S ∈ S, we
have K0(S) cofinal in K(S). Then

(a) L = L(S,K0) ≡ {L ⊆ K(X) | ∀S ∈ S, L ∩ K0(S) 6= ∅} consists of adequate
families.

(b) {U(L, ε) |L ∈ L, ε ∈ (o, 1)} is a basis at 0 for τF, and {U(L) |L ∈ L} is a basis
at 0 for σF.

(c) [∀L∃M(L
∗
≺M)] holds in the collection of all adequate families iff it holds in

L (for each of the three
∗
≺).

(d) Suppose further that ∀S ∈ S, K0(S) ⊆ clopX. Then the three conditions

[∀ L ∈ L ∃M ∈ L (L
∗
≺M)] are equivalent, and: σF is a group topology iff τF is iff

[∀L ∃M(L ≺M)] in L.

There are no surprises in the proof of Lemma 3.1. One just works through the
details. We omit this.

Lemma 3.2. Consider (βY, C), for Y a Lindelöf P-space.
(a) S = C is coinitial in Cδ.
(b) ∀S ∈ C ∃ K0(S) ⊆ clopβY which is cofinal in K(S).
Thus, Lemma 3.1 applies to L = L(S,K0).

Proof. (The closures indicated in the following are in βY ) (a) Take {Fn}N ⊆ C, so
F = ∩Fn ∈ Cδ. For every y ∈ Y and n ∈ N, there is Un ∈ clopβY with y ∈ Un ⊆ Fn
(since Fn is open and βY is zero-dimensional). Then Uy = ∩Un is a closed Gδ
in βY , so Uy ∩ Y ∈ clopY (since Y is a P-space), and Uy ∩ Y ⊆ Un ⊆ Fn ∀n.
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Thus Vy ≡ Uy ∩ Y ⊆ Un ⊆ Fn ∀n, so Vy ⊆ F , and Vy ∈ clopβY (since for any Y ,
G ∈ clopY ⇒ G ∈ clopβY ). {Vy | y ∈ Y } covers Lindelöf Y , so there is a countable
subcover {Vy(n)}N. Then, S ≡

⋃
N
Vy(n) ∈ C and S ⊆ F .

(b) Let S ∈ C, say S = cozf for f ∈ C(βY ). Then, K0(S) ≡ {f−1( 1
n ,+∞)|n ∈ N}

is cofinal in K(S) (since, if K ∈ K(S), f |K is bounded away from 0 because K is
compact). And, K0(S) ⊆ clopβY , since βY is basically disconnected. �

We note here that we do not know if τC and σC are group topologies for (βY, C), Y
any Lindelöf P-space. ( I.e., is Theorem 1.3 true replacing λD(ω1) by any such Y ?)
Lemma 3.2 (b) is included toward that issue; only the more explicit version Lemma
3.3 (b) is used below.

In the following, D<ω = {F ⊆ D | |F | < ω}.

Lemma 3.3. Now consider (βλD, C). Let cocD ≡ {B ⊆ D | |D\B| ≤ ω}.
(a) S = {B ∪D |B ∈ cocD} is coinitial in C, thus too in Cδ.
(b) For B∪D = S ∈ S, let K0(S) ≡ {B∪F |F ∈ D<ω}. Then, K0(S) ⊆ clopβλD,

and K0(S) is cofinal in K(S).
Thus, Lemma 3.1 applies to L = L(S,K0).

Proof. (a) C is coinitial in Cδ, by Lemma 3.2. We show S is coinitial in C. First,
each B ∪D ∈ C: D\B = {y1, y2, . . .}. Define g ∈ C(βλD) as: g(yn) = 1

n ; g|B = 1;
extend g over βλD, achieving cozg = B ∪D.

Let F ∈ C, say F = cozf for f ∈ C(βλD). Since λ is a P-point of βλD (see [11]),
U ≡ f−1({f(λ)}) ∈ clopβλD, so B ≡ U ∩ λD is a nbd of λ in λD, so |D\B| ≤ ω.
Finally, B ∪D ⊆ U ∪D ⊆ cozf .

(b) Let S = B ∪D. K ∪ {λ} ∈ clopλD, so B ∈ clopβλD. Since points of D are
isolated in βλD, D<ω ⊆ clopβλD. So K0(S) ⊆ clopβλD.

Let K ∈ K(S). Then K ∩ D = (K ∩ (D\B)) ∪ (K ∩ B), so K = K ∩ S =
(K∩B)∪(K∩D) = (K∩B)∪(K∩(D\B))∪(K∩B) = (K∩B)∪(K∩(D\B)) ⊆ B∪F
for F = K ∩ (D\B). For g as in (a), g is bounded away from 0 on K, thus on F , so
F is finite. �

Proof of Theorem 1.3. Take L = L(S,K0) from Lemma 3.3. Convert to the
associated family of adequate maps, as described in the end of Section 2, still denoted
L: the maps L ∈ L are functions L : S→ K(βλD) with L(S) ∈ K0(S) ∀S ∈ S.

By Lemma 3.1, we can be concerned only with ≺, and we are to show

[∀L ∈ L∃M ∈ L(L ≺M)].

Now L ≺M means L(S) ≺M(S) for the ranges, which means:

∀S1, S2∃S3 (L(S3) ⊆M(S1) ∩M(S2)).

Keep in mind that S ∈ S means S = B ∪ D for B ∈ cocD, and for L ∈ L,
L(S) ∈ K0(S), so either

(i) L(S) = B ∪ F for F ∈ D<ω, or
(ii) L(S) = F for F ∈ D<ω.
Now let L ∈ L.
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If (ii) ever happens, i.e., ∃S0 with L(S0) = F0 ∈ D<ω, just defineM(S) = F0 ∀S.
Then L ≺M.

Otherwise, (i) always happens. Consider L(i) ≡ {L ∈ L | (i) always happens}.
L ∈ L(i) means: ∀ S = B ∪D, L(S) = B ∪ F for some F ∈ D<ω. We are to show
[∀L ∈ L(i) ∃M ∈ L(i)(L ≺M)].

Now convert from L(i) to the family FEM of “finitely enlarging maps” in cocD:
P ∈ FEM means P : cocD → cocD, ∀B(P(B) ⊇ B) and |P(B)\B| < ω. The
conversion is the function p : L(i) → FEM defined as: For L ∈ L(i), so L(B ∪D) =
B ∪ F , pL(B) ≡ B ∪ F . It is easily seen that p is one-to-one and onto FEM .

In FEM , define P ≺ R as: ∀B1, B2 ∈ cocD, ∃B3 ∈ cocD(P(B3) ⊆ R(B1) ∩
R(B2)).

Lemma 3.4. For B1, B2, B3 ∈ cocD, and F1, F2, F3 ∈ D<ω,
(a) B3 ∪ F3 ⊆ (B1 ∪ F1) ∩ (B2 ∪ F2) iff (b) B3 ∪ F3 ⊆ (B1 ∪ F1) ∩ (B2 ∪ F2),
(where ( ) is closure in βλD).

Proof. Suppose (a). Then B3 ∪ F3 ⊆ (B1 ∪ F1) ∩ (B2 ∪ F2), the right side is closed,
and thus contains B3 ∪ F3.

Conversely: For a generic B ∪F , we have (B ∪F )∩D = B ∪F . Now assume (b),
and intersect this inclusion with D to get (a). �

Corollary 3.5. (a) In L(i) [L ≺M] iff in FEM [pL ≺ pM].
(b) In L(i) [∀L∃M(L ≺M)] iff in FEM [∀P∃R(P ≺ R)].

Thus the following proves Theorem 1.3.

Theorem 3.6. In FEM [∀P∃R(P ≺ R)].

Proof. Identify D with the ordinals {α | α < ω1}. A club is a closed unbounded set
in D.

Fix P ∈ FEM . For α < ω1 , set Pα ≡ P(ω1 − α) ∩ α ∈ [α]<ω. Write [ω1]<ω =
{Fβ | β < ω1}.

(a) There is a club C ⊆ ω1 for which: α ∈ C ⇒ [α]<ω ⊆ {Fβ | β < α}.
The proof is below. Knowing (a) we proceed.
For α ∈ C, Pα ∈ [α]<ω, so ∃β < α such that Pα = Fβ . Choose such β and call it

ϕ(α). This defines ϕ : C → ω1 with ϕ(α) < α ∀α ∈ C.
(b) ∃β0 < ω1 such that ϕ−1(β0) is unbounded.
(Indeed, ϕ−1(β0) is “stationary” (≡ meets every club). This is the Pressing-down

Lemma (= Fodor’s Theorem /Lemma). See p.162 [9].)
Let E = ϕ−1(β0): α ∈ E means ϕ(α) = β0, which means Pα = Fβ0 .
Define R ∈ FEM as: R(B) = B ∪ Fβ0 . Showing P ≺ R: For B1, B2 ∈ cocD,

R(B1) ∩ R(B2) = (B1 ∩ B2) ∪ Fβ0 . Now, ∃αi < ω1 s.t. Bi ⊆ ω1 − αi, so ∃α ∈ E
with α ≥ α1 ∨ α2, and ω1 − α ⊆ B1 ∩B2, and Pα = Fβ0 . Thus,

P(ω1 − α) = (ω1 − α) ∪ Fβ0 ⊆ (B1 ∩B2) ∪ Fβ0 = R(B1) ∩R(B2).

We prove (a): Define {αγ | γ < ω1} as follows: (1) α0 = 0; (2) with αδ defined,
αδ+1 = µ(αδ), where µ : ω1 → ω1 and ∀α < ω1 µ(α) is the least ordinal > α, such
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that [α]<ω ⊆ {Fβ | β < µ(α)}; (3) for γ limit ordinal, and αδ defined ∀δ < γ, we
define αγ =

∨
δ<γ

αδ. Now induct over ω1.

It is clear that γ < γ′ iff αγ < αγ′ . So {αγ | γ < ω1} is unbounded, and is closed:
Given {αγn}N,

∨
N
αγn = αγ for γ =

∨
N
γn by definition. Note that [if α =

∨
I

αi then

[α]<ω =
⋃
I

[αi]<ω]. Thus γ limit ⇒ [αγ ]<ω ⊆ {Fβ | β < αγ}. (Since F ∈ [αγ ]<ω ⇒

∃δ < γ with F ∈ [αγ ]<ω ⊆ {Fβ | β < αδ+1} ⊆ {Fβ | β < αγ}.)
Then let C = {γ | γ limit < ω1}. This too is a club. �

4. C(βD(ω1)) is not a topological group

By the title of this section, we mean the first sentence of Theorem 1.4. As before,
let D = D(ω1). By Proposition 2.7 , it is enough to show

Theorem 4.1. On C(βD), τC fails Theorem 2.5, and is not a group topology.

After proving this, we sketch the extension to certain Y ⊇ D as mentioned in
Theorem 1.4.

We proceed with the proof of Theorem 1.4 considering a general (βY, C), restricting
generality at each step as forced, finally down to Y = D.

Given Y , let L∗ = {{p} | p ∈ βY \υY }, as in Examples 2.2. For Y = D = υY , L∗

is adequate, and we shall ultimately show [@ adequateM(L∗
o
≺M)]. Thus Theorem

4.1 follows.

Lemma 4.2. Given Y , thus (βY, C) ∈ LSpFi:
(a)(See Examples 2.2) L∗ is adequate iff υY is not both Lindelöf and Čech-

complete.
(b) Suppose L∗ is adequate, and (C(βY ), τC) is a topological group. Then

(∃ adequateM(L∗
o
≺M)).

(c) Suppose L∗ is adequate, and letM be adequate. [L∗
o
≺M] fails iff ∃M1,M2 ∈

M with nbds Ui of Mi with (U1 ∩ U2 ⊆ υY ) iff ∃S1, S2 ∈ Cδ, and Mi ∈ M∩K(Si)
with nbds Ui of Mi with (U1 ∩ U2 ⊆ υY ).

Proof. (b) follows from Theorem 2.5.
(c) [L∗

o
≺ M] fails means ∃Mi and Ui with p ∈ βY \υY ⇒ p * U1 ∩ U2, i.e.,

(βY \υY ) ∩ (U1 ∩ U2) = ∅, i.e., U1 ∩ U2 ⊆ υY . The third condition in (c) is just a
translation. �

Paraphrasing Lemma 4.2(c), [L∗
o
≺ M] fails iff ∃S1, S2 ∈ Cδ witnessing that, and

∀M[L∗
o
≺ M] fails iff ∃S ⊆ Cδ, pairs from which witness each of the failures. Call

such S a “witness”.

Lemma 4.3. Given Y : Suppose L∗ is adequate, and S ⊆ Cδ has the properties
(a) Each S ∈ S has a “hemicompact representation” S =

⋃
n<ω

Sn (meaning each

Sn ∈ K(S), and K ∈ K(S)⇒ K ⊆ Sn for some n), and

(b) ∀f ∈ ωS ∃S1, S2 ∈ S and nbds Ui of S
f(Si)
i with U1 ∩ U2 ⊆ Y .
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Then, S is a witness.

Proof. Let M be adequate. If S ∈ S, there is M(S) ∈ M ∩ K(S), and so there
is a first integer f(S) with M(S) ⊆ Sf(S). This defines f ∈ ωS. Then, (b) says
“∃S1, S2 ∈ S . . .”, showing [L∗

o
≺M] fails by Lemma 4.2(c). �

Note. The notation S =
⋃
Sn in Lemma 4.3 refers to a distinguished countable

decomposition of S. Versions of this notation appear below in Lemma 4.4, Corollary
4.5, and Theorem 4.6.

Lemma 4.4. Suppose Y is locally compact and realcompact and L∗ is adequate.
(Since Y is Čech-complete, this means Y is not Lindelöf.)

(a) Let M1,M2 ∈ K(βY ). ∃ nbds Ui(U1 ∩ U2 ⊆ Y ) iff M1 ∩M2 ⊆ Y .

(b) Let M be adequate. [L∗
o
≺ M] fails iff ∃S1, S2 ∈ S and Mi ∈ K(Si) with

M1 ∩M2 ⊆ Y .

(c) Let S ⊆ Cδ. Suppose Lemma 4.3(a), and: ∀f ∈ ωS ∃S1, S2 ∈ S(Sf(S1)
1 ∩

S
f(S2)
2 ⊆ Y ). Then, S is a witness.

Proof. (b) follows from (a), and (c) follows from (a),(b), and Lemma 4.3.
Showing (a): ⇒ is obvious. ⇐: M1 ∩M2 ⊆ Y and Y locally compact ⇒ M1 ∩M2

and Mi ∩ (βY \υY ) are three disjoint compact sets. So there are disjoint nbds V0, Vi
and we can take V0 ⊆ Y . Then Ui = V0 ∪ Vi are nbds of Mi �

Now consider uncountable discrete Y of nonmeasurable cardinal, so Y is realcom-
pact ([11]). So: L∗ is adequate and Y is locally compact. βY is zero-dimensional
and each clopen set is of the form A for A ⊆ Y . Each S ∈ C is locally compact and
σ-compact and thus has a hemicompact representation S =

⋃
n<ω

An with
⋃
n<ω

An = Y .

Whenever
⋃
n<ω

An = Y ,
⋃
n<ω

An ∈ C.

Let J be an index set, and let µ = {Anα | α ∈ J, n < ω} be a family of subsets of
Y with the property: ∀α(

⋃
n<ω

Anα = Y ). We call such µ a “matrix”. For α ∈ J, let

Sα =
⋃
n<ω

Anα, and let S(µ) = {Sα | α ∈ J}. So S(µ) ⊆ C. If S(µ) is a witness, we

call µ a witness.
Consider Lemma 4.4(c) for such S(µ). The parenthetical condition takes the form

A
f(α)
α ∩ Af(β)

β ⊆ Y for Af(α)
α , A

f(β)
β ∈ µ. Now, Y is discrete, and for A,B ⊆ Y ,

A ∩B ⊆ Y iff A ∩B is finite, and Lemma 4.4(c) becomes:

Corollary 4.5. Suppose Y is uncountable discrete. Suppose µ = (Anα) is a matrix

as above for which: ∀f ∈ ωJ ∃ α, β(|Af(α)
α ∩ Af(β)

β | < ω). Then, µ is a witness, and

on C(βY ), τC is not a group topology.

Corollary 4.5 and the following prove Theorem 4.1.

Theorem 4.6. For Y = D there is a matrix µ satisfying Corollary 4.5.

Proof. We use an Aronszajn tree (A-tree). We refer to [16], for some basic facts,
then make a construction.

11



(a) A tree is a poset (T,<) such that ∀x ↓x ≡ {y | y < x} is well-ordered (by <).
The α−level Tα = {x | ↓x has order type α}. The height of T = min{α | Tα = ∅}.

So T =
·⋃
{Tα |α < height}. A branch is a maximal chain (in T ). An A-tree is a tree

(T,<) of height ω1, all |Tα| ≤ ω, no uncountable branches. So |T | = ω1. We identify
T with the countable ordinals, i.e., T = ω1. For γ ∈ T , its level λ(γ) = the unique
α (γ ∈ Tα). For λ(γ) > α ∃ unique x ∈↓γ ∩ Tα; that x is denoted pα(γ) (α-level
predecessor of γ; or, projection of γ to α-level.)

(Don’t confuse the tree order < with ordinal order <.)
(b) ([16], 22.3) There is an A-tree.
(c) ([16], 24.2) Let (T,<) be an A-tree. If W is an uncountable family of pair-

wise disjoint finite subsets of T , then ∃S, S′ ∈ W(x ∈ S, x′ ∈ S′ ⇒ x and x′ are
incomparable).

(d) (The Theorem) On T (=D), there is µ satisfying 4.5.

Take an A-tree (ω1, <). ∀α: |Tα| ≤ ω so there is an one-to-one map Tα
ψα−→ ω (=

N); |
⋃
γ<α

Tγ | ≤ ω so there is an one-to-one map
⋃
γ<α

Tγ
ϕα−→ ω; define fα : T → ω by

fα(γ) =

 ϕα(γ) when λ(γ) < α, (3α)
ψα(γ) when λ(γ) = α, i.e. γ ∈ Tα, (2α)
ψα(pα(γ)) when λ(γ) > α. (1α)

Define Anα ≡ f−1
α {0, . . . , n− 1}. This defines µ.

◦ Fix α.
⋃
n
Anα = f−1

α (ω) = T (= ω1).

◦ Take f ∈ ωω1 . ∃n0 (|f−1(n0)| > ω). ∀α ∈ f−1(n0), let Wα ≡ f−1
α {0, . . . , n −

1} ∩ Tα. W = {Wα}ω1 satisfies (c), therefore ∃ α 6= β (x ∈ Wα, y ∈ Wβ ⇒
x, y incomparable), so An0

α ∩A
n0
β is finite: γ ∈ An0

α ∩A
n0
β means γ satisfies (1α∨2α∨

3α)∧(1β∨2β∨3β) = [. . .]∨(3α∧3β). For each of the 2×3 cases in [. . .], there are only
< ω such γ, immediately. There is no γ satisfying 3α ∧ 3β : if γ does, λ(γ) > α, β,
and ψα(pα(γ)), ψβ(pβ(γ)) ∈ {0, . . . , n0−1} and thus (the condition of (c)) pα(γ) and
pβ(γ) are incomparable. But they are not, because ↓ γ is well-ordered. �

We turn to the extension of Theorem 4.1 suggested in the second sentence of
Theorem 1.4. “Sum” (of spaces) means “disjoint union” (which is the categorical
sum). We denote generically by Σ a sum of uncountably many non-void compact
spaces.

Theorem 4.7. (a) If W is any uncountable discrete space, the (C(βW ), τC) is
not a topological group.

(b) If Y contains a Σ as a clopen set, then (C(βY ), τC) is not a topological group.
(c) If Y is paracompact, locally compact, and zero-dimensional, and if (C(βY ), τC)

is a topological group, then Y is Lindelöf.

Proof. We sketch the proof, omitting numerous details.

(i) SupposeG1, G2 are groups, with respective topologies ti, and suppose (G1, t1)
ϕ−→

(G2, t2) is a continuous homomorphism. If ϕ is relatively open (i.e., open onto its
range), and if (G1, t1) is a topological group, then so is (ϕ(G1), t2|ϕ(G1)).
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Any continuous map A
µ−→ B creates a group homomorphism C(B)

µ̃−→ C(A) by
composition: µ̃(f) = f ◦ µ.

Let (A,F), (B,G) ∈ LSpFi. A continuous map A
µ−→ B for which [G ∈ G ⇒

µ−1(G) ∈ F] is a morphism of the category LSpFi, and we write (A,F)
µ−→ (B,G) ∈

LSpFi. (See the Appendix.)

(ii) If (A,F)
µ−→ (B,G) ∈ LSpFi, then (C(B), τG)

µ̃−→ (C(A), τF) is a continuous
homomorphism.

(iii) In (ii), µ̃ is relatively open if both
(a) ∀ T ∈ Fδ ∃ ST ∈ Gδ (µ−1(ST ) ⊆ T ), and
(b) ∀L ∈ K(B) ∀ ε ∈ (0, 1) ∀f ∈ C(µ(A)) with |f | ≤ ε on L ∩ µ(A), ∃ g ∈ C(B)

with [g|µ(A) = f and |g| ≤ ε on L].

(iv) Let V σ−→ W be continuous, with Čech-Stone extension βV
µ−→ βW . Then

(βV, CV )
µ−→ (βW, CW ) ∈ LSpFi, so (C(βW ), τCW )

µ̃−→ (C(βV ), τCV ) is a continu-
ous homomorphism.

(v) Let V σ−→ W , µ and µ̃, be as in (iv). If either (a) σ is an embedding with
σ(V ) clopen in W , or (b) σ is onto, W is discrete, ∀x ∈W (σ−1(x) is compact), then

both of (iii) (a) and (b) hold, so that (C(βW ), τCW )
µ̃−→ (C(βV ), τCV ) is a relatively

open continuous homomorphism, so that

[(C(βW ), τCW ) not a topological group⇒ (C(βV ), τCV ) not a topological group].

We prove Theorem 4.7(b) in three steps, using Theorem 4.1 in the first. The first
step is Theorem 4.7(a).

(1). Suppose W is uncountable discrete. So there is D = V
σ−→ W as (v)(a). By

(v) and Theorem 4.1, (C(βW ), τCW ) is not a topological group.
(2). Consider a Σ, then the obvious Σ = V

σ−→ W , W uncountable discrete, as
(v)(b). By (v) and (1), (C(βΣ), τC) is not a topological group.

(3) (=Theorem 4.7(b)). Suppose Y contains a Σ as a clopen set. Let Σ = V
σ−→

W = Y be the embedding, as (v)(a). By (v) and (2), (C(βY ), τC) is not a topological
group.

We prove Theorem 4.7(c) from (b).
If Y is paracompact not Lindelöf, then Y contains a “uniformly discrete” copy of

D (see [15]). If Y is also locally compact and zero-dimensional, then the copy of D
can be enlarged to a Σ which is clopen. Then the embedding Σ σ−→ Y is as (v)(a),
so by (v) and Theorem 4.7(b), (C(βY ), τC) is not a topological group. �

It seems likely that some hypotheses in Theorem 4.7, and (v) above, can be re-
laxed. For example, if (v)(a) is replaced by (a’) [σ is an embedding with σ(V ) a
C∗-embedded zero-set], then (iii)(a) holds; but we don’t know about (iii)(b).
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5. Appendix. On the context for this paper.

We explain some lines of thought which have generated our studies of τF and σF.
These involve epimorphisms in a category W of l-groups, and the closely related
monomorphisms in the topological category LSpFi.

LSpFi is the category of “Spaces with Lindelöf filters”: Objects are the (X,F)

considered in this paper, and a morphism (X,F)
f−→ (Y,G) is a continuous function

with (∀G ∈ G, f−1(G) ∈ F). A monomorphism (monic) of LSpFi is a left-cancelable
morphism, i.e., m with (mf = mg ⇒ f = g (f, g ∈ LSpFi)). These monics are
given several descriptions in [3] and [12].

A one-to-one morphism is monic, but not conversely. To the present point:

Theorem 5.1. (See [12]). Consider a surjection (X,F)
µ
� (Y,G) in LSpFi.

Define µ̃ : C(Y )→ C(X) as µ̃(f) = f ◦µ; This is an algebraic embedding of C(Y ) in
C(X). These are equivalent: µ is monic in LSpFi; µ̃(C(Y )) is dense in (C(X), τF);
µ̃(C(Y )) is dense in (C(X), σF).

Remarks 5.2. (a) In Theorem 5.1, the densities in τF and σF are equivalent in
spite of [τF � σF for infinite X].

(b) The systems µ̃(C(Y )) in Theorem 5.1 are sub-vector-lattices of C(X) con-
taining 1, which are uniformly complete. Any such subset A ⊆ C(X) is of

the form µ̃(C(Y )): Form the topological quotient X
µ
� Y defined by [µ(x1) =

µ(x2) iff a(x1) = a(x2) ∀a ∈ A], and give Y the quotient filter; then µ̃(C(Y )) = A.
(c) There is more to the subject of “monics in spaces with filter” ([6], [3]). SpFi

(sans L) has objects (X,F), where F consists of dense and merely open sets. There
is a contravariant adjunction SpFi � Frm, the latter the category of completely
regular frames; and µ is monic in SpFi iff its image is epic in Frm, but descrip-
tion of these morphisms [17] are not completely satisfactory. Under the adjunction,
LSpFi and Lindelöf frames correspond, and the situation comes into sharper focus,
e,g.,Theorem 5.1 and [12], [3], [5], and see the following discussion about l-groups.

W is the category of archimedean lattice-ordered groups with distinguished
weak order-unit, with unit-preserving l-group homomorphisms. Each G ∈ |W|
has its Yosida representation G ⊆ D(Y G) as a point-separating l-group of con-
tinuous [−∞,+∞]-valued functions on certain compact Hausdorff Y G, with all
g−1((−∞,+∞)) dense (g ∈ G). Let FG = {g−1((−∞,+∞)) | g ∈ G}. So
SY G ≡ (Y G,FG) ∈ LSpFi, and we have functor SY : W → LSpFi (not onto),
with the feature: ϕ is epic in W (i.e., right-cancelable) iff SY ϕ is monic in LSpFi.
(See [3].)

For the express purpose of studying epics in W, [2] puts a topology on each
G ∈ |W|, denoted there τG and called the “epi-topology”, by exactly the procedure
of §2 here, viewing G ⊆ D(Y G): First consider S ∈ (FG)δ and define compact-open
τS on G via basic τS-neighborhoods U(g,K, ε) = {f ∈ G | |f−g| ≤ ε on K} (compact
K ⊆ S); then τG =

∧
{τS | S ∈ (FG)δ} on G.

Theorem 5.3. (See 2.6 and 5.3 of [2]). Let H be a divisible sub-W-object of G.
The inclusion H ≤ G is W-epic iff H is τG-dense in G.
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Similarly, we can define the compact-zero topologies σS (S ∈ (FG)δ) on G, then
σG =

∧
{σS | S ∈ (FG)δ}, and show the additional equivalence in Theorem 5.3 “H

is σG-dense in G”, which fact we will spew out from our explanation of how 5.1 is a
legitimate generalization of Theorem 5.3, which follows.

Let G∗ be the sub-W-object of G of those g ∈ G ⊆ D(Y G) which are bounded
functions. By the Stone-Weierstrass Theorem, G∗ is uniformly dense in C(Y G). The
relation between the topologies τG and σG on G, and the topologies τFG and σFG

on C(Y G), defined from the filter, is evident:

τG|G∗ = τFG |G∗; σG|G∗ = σFG |G∗,

where, e.g., τG|G∗ denotes the subspace topology on G∗.
Let H ≤ G. Then, H∗ ≤ G∗, and, it is easy to see that:

H is τG − dense in G iff H∗ is τG|G∗ − dense in G∗;

H is σG − dense in G iff H∗ is σG|G∗ − dense in G∗.
Now label the inclusion e : H ≤ G. Applying the functor SY , we obtain the

LSpFi-surjection µ ≡ SY e : (Y G,FG � (Y H,FH). Then, as in 5.1, we have the
injection µ̃ : C(Y H)→ C(Y G). Note again that G∗ (respectively, H∗) is uniformly
dense in C(Y G) (resp., C(Y H)).

Then, a little thought about uniform limits, and τG and σG neighborhoods, reveals:

H∗ is τG|G∗ − dense in G∗ iff µ̃(C(Y H)) is τFG − dense in C(Y G),

and likewise for σG and σFG .
Combining these thoughts with Theorems 5.3 and 5.1, we have

Corollary 5.4. Let H be a divisible sub-W-object of G, with µ, µ̃ etc. as above.
The following are equivalent

(1) H ≤ G is epic in W.
(2) H is τG-dense in G.
(3) H is σG-dense in G.
(4) µ : (Y G,FG � (Y H,FH) is monic in LSpFi.
(5) µ̃(C(Y H)) is τFG-dense in C(Y G).
(6) µ̃(C(Y H)) is σFG -dense in C(Y G).

[2](5.6, §6, 8.8) raises the question: For G ∈ |W|, when is the epi-topology τG a
topological group topology on G? This is the motivation for the present paper, and
the sequel “Topological group criterion for C(X) in compact-open-like topologies,
II”. We now complete the explanation of how the present development addresses
this.

Proposition 5.5. Let G ∈ |W|. The following are equivalent.
(1) On G, τG (resp., σG) is a group topology.
(2) On G∗, τG|G∗ (resp., σG|G∗) is a group topology.
(3) On C(Y G), τFG (resp., σFG) is a group topology.

Corollary 5.6. (a) On C(λD(ω1)) = C, τC and σC are group topologies.
(b) On C(D(ω1)) = C, τC and σC are not group topologies.
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Corollary 5.6 follows from Proposition 5.5, and Sections 3,4 (as does the general-
ization of (b), using Theorem 4.7).

Proof of 5.5. It is evident that, if A is a subgroup of B, and t is a group topology
on B, then t|A is a group topology on A. Thus (1)⇒(2), and (3)⇒(2).

(2)⇒(3) with a little thought about uniform limits and the form of neighborhoods
of 0.

(2)⇒(1): (i) Basic neighborhoods of 0 (in the four topologies involved) are convex
(|f | ≤ |g| and g ∈ U ⇒ f ∈ U).

(ii) If basic neighborhoods U, V of 0 satisfy V + +V + ⊆ U , then V +V ⊆ U (since
f, g ∈ V ⇒ |f |, |g| ∈ V +, and |f + g| ≤ |f |+ |g| ∈ V + + V + ⊆ U , so f + g ∈ U).

(iii) For any E ⊆ Y G, g ∈ G+, ε ∈ (0, 1), g|E = 0 (respectively, g|E ≤ ε) iff
g ∧ 1|E = 0 (respectively, g ∧ 1|E ≤ ε). Thus

(iv) For a basic neighborhood W of 0 in G (for either τG or σG) and g ∈ G+,
g ∈W iff g ∧ 1 ∈W .

Now let U be a basic neighborhood of 0 in G (for τG or σG). We want another,
V , with V + + V + ⊆ U . Assume (2): ∃V (V ∗ + V ∗ ⊆ U∗). If |f |, |g| ∈ V +, then
f ∧ 1, g1 ∈ V ∗. Now (f + g) ∧ 1 ≤ f ∧ 1 + g ∧ 1 ∈ V ∗ + V ∗ ⊆ U∗, so (f + g) ∧ 1 ∈ U
since U is convex, thus f + g ∈ U . �

We are grateful to the referee for a very careful and thoughtful reading of the
paper, and for numerous suggestions which have improved the paper.
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phisms in regular Lindelöf locales. Appl. Categor. Struct.,15(2007) 109–118.

[6] R. Ball, A. Hager and A. Molitor: Spaces with filters. Proc. Symp. Cat. Top., Univ. Cape

Town 1994, (C. Gilmour, B. Banaschewski and H. Herrlich, Eds.), Dept. Math. And Appl.
Math., Univ. Cape Town, (1999), 21–36.

[7] N. Bourbaki: General Topology, Chapters 1-4, Springer-Verlag, (1998).
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