
October 15, 2009 10:25 WSPC/INSTRUCTION FILE Bolws-jaa

Journal of Algebra and Its Applications
c© World Scientific Publishing Company

Bol loops of odd prime exponent

Tuval Foguel

Department of Mathematics and Computer Science

Stillwell 426
Western Carolina University

Cullowhee, NC 28723 USA

tsfoguel@wcu.edu

Michael Kinyon

Department of Mathematics

2360 S Gaylord St

University of Denver
Denver CO 80208 USA

mkinyon@math.du.edu

Received (Day Month Year)

Revised (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxx)

Although any finite Bol loop of odd prime exponent is solvable, we show there exist such
Bol loops with trivial center. We also construct finitely generated, infinite, simple Bruck

loops of odd prime exponent for sufficiently large primes. This shows that the Burnside
problem for Bruck loops has a negative answer.

Keywords: Bol loop, Bruck loop, Moufang loop, p-loop, central nilpotence, Bruck-Tarski

monster.

2000 Mathematics Subject Classification: 20N05

1. Introduction

A loop (Q, ·) consists of a set Q with a binary operation · : Q ×Q → Q such that

(i) for all a, b ∈ Q, the equations ax = b and ya = b have unique solutions x, y ∈ Q,

and (ii) there exists 1 ∈ Q such that 1x = x1 = x for all x ∈ Q. A loop Q is said to

be a (right) Bol loop if it satisfies the identity

[(xy)z]y = x[(yz)y] (Bol)

for all x, y, z ∈ Q. For x ∈ Q, define the right and left translations by x by,

respectively, yRx = yx and yLx = xy for all y ∈ Q. Then the Bol identity is

equivalent to

RxRyRx = R(xy)x

1
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for all x, y ∈ Q. Much of the literature on Bol loops (e.g., [15]) works with the dual

notion of left Bol loop defined by the identity x[y(xz)] = [x(yx)]z. Results for left

Bol loops dualize trivially to results about right Bol loops. For background in loop

theory, we refer the reader to [5,25]. Basic information about Bol loops, especially

facts not explicitly cited below, can be found in [26].

Let Q be a loop. For x ∈ Q and n ∈ Z, set xn = 1Rnx . If Q is a Bol loop, then

Q is power-associative, that is, xmxn = xm+n for all x ∈ Q, m,n ∈ Z, and Q is

also right power-alternative, that is, Rnx = Rxn for all x ∈ Q, n ∈ Z. Finite Bol

loops satisfy the elementwise Lagrange property, that is, the order of any element

divides the order of the loop. (It is still an open whether or not Bol loops satisfy the

full Lagrange property: does the order of a subloop of a finite Bol loop divide the

order of the loop?) A Bol loop is said to be uniquely 2-divisible if the squaring map

x 7→ x2 is a bijection. If Q is a finite Bol loop, unique 2-divisibility is equivalent to

every element of Q having finite odd order, and also to Q itself having odd order

[8]. Bol loops of odd order satisfy the Cauchy property, that is, for each prime p,

there exists an element of order p [8].

For p a prime, a power-associative loop is called a p-loop if every element has

finite order which is some power of p, that is, for each x, there exists n > 0 such that

xp
n

= 1. If Q is a finite Bol loop, then by the elementwise Lagrange and Cauchy

properties, being a p-loop is equivalent to Q itself having order some power of p.

Two important subclasses of Bol loops are Moufang loops and Bruck loops. The

former can be defined in various ways, for instance, as those Bol loops satisfying

the antiautomorphic inverse property (xy)−1 = y−1x−1. Bruck loops are Bol loops

satisfying the automorphic inverse property (xy)−1 = x−1y−1. The intersection of

these two classes is the class of commutative Moufang loops.

The multiplication group of a loop Q is the group Mlt(Q) = 〈Rx, Lx|x ∈ Q〉.
The inner mapping group Inn(Q) is the stabilizer of the identity element 1 ∈ Q.

A subloop which is invariant under the action of Inn(Q) is said to be normal. An

important fact about normal subloops we will use later is that they are permutable,

that is, if H,K are subloops of a loop Q and if K is normal, then HK and KH are

subloops of Q. A loop with no nontrivial normal subloops is simple.

The right nucleus of a loop Q is the set Nr(Q) = {a ∈ Q | (ax)y = a(xy) ∀x, y ∈
Q}, the left nucleus is Nl(Q) = {a ∈ Q | (xy)a = x(ya) ∀x, y ∈ Q}, the middle

nucleus is Nm(Q) = {a ∈ Q | (xa)y = x(ay) ∀x, y ∈ Q}, and the nucleus is N(Q) =

Nr(Q)∩Nm(Q)∩Nl(Q). These are all subloops. In a Bol loop Q, Nr(Q) = Nm(Q)

is a normal subloop [8], but Nl(Q) is not necessarily normal.

For a subset S of a loop Q, we borrow terminology from semigroup theory and

define the commutant of S in Q to be the set CQ(S) = {a ∈ Q | ax = xa ∀x ∈ S}.
As usual, if S = {x} is a singleton, we write CQ(x) instead of CQ({x}). The

commutant of Q itself is C(Q) = CQ(Q). (This latter set is also known as the

centrum or semicenter or commutative center.) Note that C(Q) =
⋂
x∈Q CQ(x).

The commutant of a Moufang loop is a subloop [25], but this is not generally true
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in Bol loops or even Bruck loops [18]. It is, however, true that in a uniquely 2-

divisible Bol loop, the commutant is a subloop [17]. Even in Moufang loops, the

normality of the commutant remains an open problem. In §3, we show that in a

uniquely 2-divisible Bruck loop, the commutant is a normal subloop.

The center of a loop Q is Z(Q) = N(Q)∩C(Q). This is exactly the fixed point

subset of Inn(Q). The notion of upper central series is defined in the same way as in

group theory, and a loop is centrally nilpotent if it has a finitely terminating upper

central series. As in group theory, a loop is solvable if it has a normal series with

factors which are abelian groups. Centrally nilpotent loops are necessarily solvable.

Much has been learned about Bol loops in the last few years, especially thanks

to work of Nagy. For about three decades, the existence of finite, simple, non-

Moufang Bol loops was the main open problem in loop theory. Firstly, Nagy gave

a very general construction of a large class of such loops [19]. The construction

showed that not only are there many such loops (more than will likely allow for a

classification any time soon), but there are also surprising examples. For instance,

Nagy showed that there exist finite, simple, non-Moufang Bol loops of odd order

[19]. This answered negatively a question of [8], and is in sharp contrast to the

more specialized cases: every finite Bruck loop of odd order is solvable [10] and

every finite Moufang loop of odd order is solvable [11].

Turning now to p-loops, we consider first p = 2. Finite Moufang 2-loops are

centrally nilpotent [12]. There exist finite Bruck loops of exponent 2 with trivial

center [16]; the smallest order at which this occurs is 16. More recently, building

on earlier work of Aschbacher [4], Nagy constructed a finite simple Bol loop of

exponent 2 and order 96 [21].

What of Bol p-loops for p an odd prime? Thanks to seminal work of Glauberman,

it is known that every finite Bruck p-loop has nontrivial center [10], and every finite

Moufang p-loop has nontrivial center [11]. It follows immediately by induction that

such loops in either class are centrally nilpotent.

In the general case, the best positive result for a finite Bol p-loop is again due

to Nagy: such a loop is solvable [20]. However, until recently, the following problem

was considered to be open:

Does every finite Bol p-loop have nontrivial center?

In §2 we present examples for p = 3 showing that the answer to this question

is no. As it turns out, our examples are related to a loop which has been in the

literature since 1963, and which, suitably interpreted, would have already answered

the question.

Finitely generated commutative Moufang loops are finite [5], and so it follows

from Glauberman’s results that for each odd prime p, a finitely generated commu-

tative Moufang p-loop of finite exponent is centrally nilpotent. (This can, in fact,

be shown directly for commutative Moufang loops [5].) One might then ask the

following:
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Is every finitely generated Bruck p-loop of finite exponent centrally nilpotent?

In §5, we answer this question negatively by constructing a family of Bruck loops

we call Bruck-Tarski monsters, which are finitely generated, infinite and simple.

2. Finite Bol 3-loops with trivial center

While searching for particular types of projective planes, Keedwell gave an example

of a normalized latin square of order 27 with certain properties. He published the

example in two papers [13,14] in 1963 and 1965, respectively. Dénes and Keedwell

later included the example in their well-known book on latin squares ([7], p. 50).

A normalized latin square is the Cayley table for a loop. It is obvious by in-

spection that the loop from Keedwell’s latin square has exponent 3, but no other

properties are immediately apparent. Perhaps because the example appeared in the

latin square literature, the loop theory community seems to have been unaware of

it.

Using the LOOPS package [22] for GAP [9], we analyzed Keedwell’s loop and

found that it was, in fact, a left Bol loop with trivial center. The loop has a normal

associative subloop of order 9. Using tools from the LOOPS package, we took the

transpose of the Cayley table to get a right Bol loop, and then constructed an

isomorphic copy in which the normal subloop of order 9 is in the upper left corner.

Two loop structures (Q, ·) and (Q, ◦) on the same underlying set Q are said to

be (principally) isotopic if there exist a, b ∈ Q such that x ◦ y = xR−1a · yL−1b where

the translations are taken in (Q, ·). Every isotope of a Bol loop is itself a Bol loop.

Further, every loop isotopic to a Bol loop (Q, ·) is isomorphic to an isotope of a

particular form, namely one given by x ◦ y = xRa · yL−1a for a ∈ Q [26].

We computed all principal isotopes of our modified version of Keedwell’s loop,

a task made easier since it is enough to consider isotopes of the form x ◦ y =

xRa · yL−1a . It turns out that there are exactly two isotopy classes. We present here

a representative from each class in Tables 1 and 2.

We computed various structures attached to these loops. Besides the multipli-

cation groups and inner mappings groups, we also computed the following. The

right and left multiplication groups of a loop Q are RMlt(Q) = 〈Rx | x ∈ Q〉 and

LMlt(Q) = 〈Lx | x ∈ Q〉, and their respective stabilizers of the identity element are

the right and left inner mapping groups LInn(Q) and RInn(Q). Isotopic loops have

isomorphic multiplication groups (both full and one-sided). The associator subloop

A(Q) is the smallest normal subloop of Q such that Q/A(Q) is a group. The derived

subloop Q′ (sometimes called the commutator-associator subloop) is the smallest

normal subloop of Q such that Q/Q′ is an abelian group.

In the discussion that follows, Q refers to either of the two loops.

• G := Mlt(Q) = LMlt(Q) is a solvable group of order 2637 and derived

length 3. The derived subgroup G′ has order 2636, while G′′ is elementary

abelian of order 35. G itself is a semidirect product of C3 with G′ and is
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also a semidirect product of a subgroup of order 263 (the group [192,3],

according to GAP [9]) with G′′.

(Note that if the order of G were a power of 3, then by a theorem of A.

A. Albert, the centers of the two loops would be nontrivial [2].)

• H := Inn(Q) = LInn(Q) is a solvable group of order 2634 and derived

length 2. H ′ is elementary abelian of order 34 and H itself factors as a

semidirect product of an abelian subgroup of order 26 with H ′.

• K := RMlt(Q) is a nilpotent group of order 35 and nilpotency class 2.

GAP [9] identifies it as group [243, 37], a group with rank 3. K ′ = Z(K) is

elementary abelian of order 9 and K/Z(K) is also elementary abelian.

• RInn(Q) is an elementary abelian group of order 9.

• Nr(Q) = Nm(Q) = 1.

• C(Q) = 1.

• Nl(Q) = A(Q) = Q′ is an elementary abelian group of order 9 (the upper

left corner of both tables). This is the unique nontrivial normal subloop.

3. Commutants of uniquely 2-divisible Bruck loops

As mentioned in the introduction, in a uniquely 2-divisible Bol loop Q, the com-

mutant C(Q) is a subloop. In this section we address the normality of this subloop

in uniquely 2-divisible Bruck loops.

A subloop is normal if it is invariant under the action of Inn(Q). The group

Inn(Q) is generated by the following permutations:

Rx,y = RxRyR
−1
xy Tx = RxL

−1
x Lx,y = LxLyL

−1
yx

for all x, y ∈ Q. In a Bruck loop, the right inner mappings Rx,y play a special

role. The following result can be found in various sources; see, e.g., [15] (translating

between left and right Bruck loops).

Proposition 3.1. In a Bruck loop, each Rx,y is an automorphism.

Theorem 3.1. Let Q be a uniquely 2-divisible Bol loop such that each Rx,y is an

automorphism. Then C(Q) is a normal subloop.

Proof. The commutant C(Q) is fixed by each Tx, x ∈ Q. It is clear from the

definition of C(Q) that it is invariant under the action of automorphisms, and so

it follows that cRx,y ∈ C(Q) for all x, y ∈ Q, c ∈ C(Q). It is thus enough to check

that for all c ∈ C(Q), x, y ∈ Q, we have cLx,y ∈ C(Q). Now for fixed x, y ∈ Q, set

z = cLx,y, and let u = y1/2. We compute

(xy)z = x(yc) = x(cy) = x[(cu)u] = x[(uc)u][(xu)c]u = [c(xu)]u

using the right alternative property in the third equality and (Bol) in the fifth

equality. Thus

[(xy)z](xy)−1 = {[c(xu)]u}(xy)−1 = {[c(xu)]u}(xu2)−1 = cRxu,u .
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Therefore [(xy)z](xy)−1 ∈ C(Q). But then (xy)z = {[(xy)z](xy)−1}(xy) =

(xy){[(xy)z](xy)−1}. Canceling, we have z = [(xy)z](xy)−1, and so z ∈ C(Q),

as claimed.

Corollary 3.1. If Q is a uniquely 2-divisible Bruck loop, then C(Q) is a normal

subloop.

4. Twisted subgroups and uniquely 2-divisible Bruck loops

In this section, we briefly review some facts about twisted subgroups, and a standard

construction of Bruck loops.

Recall that a subset T of a group G is a twisted subgroup of G if (i) 1 ∈ T , (ii)

T−1 = T , and (iii) xTx ⊆ T for all x ∈ T [3,8].

Let G be a group and suppose τ ∈ Aut(G) has order 2. A typical example of a

twisted subgroup which is not a subgroup is the set K(τ) = {g ∈ G | gτ = g−1}.
If T is a twisted subgroup, the Aschbacher radical of T is the set T ′ =

{x1 · · ·xn | x−11 · · ·x−1n = 1, xi ∈ T}. This is a normal subgroup of G [3], and it

also measures whether or not T arises as a set of inverted elements of an involutory

automorphism in the case where T generates G.

Proposition 4.1 ([3], Thm. 2.2; [8], Prop. 3.9). Let G be a group, T ⊆ G a

twisted subgroup and assume 〈T 〉 = G. There exists τ ∈ Aut(G) with τ2 = 1 such

that T ⊆ K(τ) if and only if T ′ = 1.

A twisted subgroup T of a group G is said to be uniquely 2-divisible if each

x ∈ T has a unique square root in T , that is, a unique element x1/2 ∈ T such that

(x1/2)2 = x. On such a twisted subgroup, we may define a new binary operation

� : T × T → T by

x� y := (yx2y)1/2

for x, y ∈ T . Following Glauberman [10], we denote the magma (T,�) by T (1/2).

The following properties are straightforward to verify [10,8]. (Note that in [10,8],

the operation is x� y = (xy2x)1/2, which gives a left Bruck loop.)

• T (1/2) is a uniquely 2-divisible Bruck loop.

• Integer powers of elements in T formed in G agree with those in T (1/2).

Thus an element has finite order in T if and only if it has the same order

in T (1/2).

• If K ⊆ T is a subloop of T (1/2), then K is a twisted subgroup of G.

5. Bruck-Tarski Monsters

A Tarski monster T is an infinite group in which every nontrivial proper subgroup

is cyclic of order a fixed prime p. A Tarski monster is a simple group. Such groups

were constructed by Ol’shanskii [23] for every p > 1075. For more detail about these

groups, see [24].
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One can clearly make sense of the notion of a Tarski monster for any class of

power-associative loops. Here we consider the following.

Definition 5.1. A Bruck-Tarski monster is an infinite Bruck loop in which every

nontrivial proper subloop is cyclic of prime order p.

An immediate consequence of this definition is that a Bruck-Tarski monster is

a two-generated loop of exponent p.

Theorem 5.1. A Bruck-Tarski monster BT is a simple loop.

Proof. Let K,H be distinct proper subloops of BT which are cyclic groups of

prime order p. If K is a normal subloop, then K is permutable, and so HK is a

subloop. But p < |HK| < ∞, a contradiction. Therefore the only normal subloops

of BT are trivial, and so BT is a simple loop.

Corollary 5.1. If BT is a Bruck-Tarski monster, then Nr(BT ) = Nm(BT ) =

C(BT ) = 1.

Proof. The right and middle nuclei coincide in any Bol loop and are normal. The

triviality of the commutant follows from Corollary 3.1.

Now we will show that Bruck-Tarski monsters exist. Firstly, we need the follow-

ing.

Lemma 5.1. If T is a Tarski monster group, then Aut(T ) contains no involutions.

Proof. Suppose ι ∈ Aut(T ) is an involution. Let G = T 〈i〉 be the semidirect

product of T by 〈i〉. Then by ([28], 14.3.8), either Z(G) contains an involution or

G has a proper infinite subgroup with nontrivial center. In either case, we have a

contradiction.

Theorem 5.2. If T is a Tarski monster, then T (1/2) is a Bruck-Tarski monster.

Proof. Suppose that K 6= 1 is a subloop of T (1/2) which is not a cyclic group

of prime order p. Then K is a twisted subgroup of T and T = 〈K〉. Since Aut(T )

contains no involutions (Lemma 5.1), it follows from Proposition 4.1 that K′ > 1.

But T is a simple group, so T = K′ ⊆ K. Thus as a loop, K = T (1/2).

In 1902, Burnside introduced what is now known as the Burnside Problem [6]:

Is a finitely generated periodic group of bounded exponent necessarily finite? Of

course, one can formulate the problem more generally for power-associative loops

as follows:

Given a class P of power-associative loops, is a loop from P which is finitely

generated, periodic and of bounded exponent necessarily finite?
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For the class P of all groups, the question was answered negatively in 1968 by

Adian and Novikov [1], and is now also seen to be negative by the existence of

Tarski monsters. On the other hand, the answer is affirmative when P is the class

of solvable groups ([28], 5.4.11) or when P is the class of commutative Moufang

loops ([5], Thm. 11.3). We now have an answer for the class of Bruck loops.

Corollary 5.2. The Burnside problem for Bruck loops has a negative answer.

Proof. A Bruck-Tarski monster is a finitely generated, but infinite periodic Bruck

loop of bounded exponent.

We conclude with a few properties of Bruck-Tarski monsters constructed from

Tarski monster groups. Given a group G and x, y ∈ G, we use the usual notation

xy = y−1xy and [x, y] = x−1y−1xy = x−1xy.

Theorem 5.3. Let T is a Tarski monster. If 1 6= x ∈ T , then CT (1/2)(x) = 〈x〉.

Proof. Clearly 〈x〉 ⊆ CT (1/2)(x). For the converse, suppose that x, y ∈ T (1/2) lie

in distinct cyclic subloops, and assume that y ∈ CT (1/2)(x). Then x � y = y � x
iff (yx2y)1/2 = (xy2x)1/2 iff yx2y = xy2x iff [x, y] = [x−1, y−1]. Thus [x, y]xy =

[x−1, y−1]xy = xy[x, y], that is, xy ∈ CT ([x, y]) = 〈[x, y]〉. Thus xy generates

〈[x, y]〉. Now (xy)x = (xy)y
−1

= yx = xy[y, x] = xy[x, y]−1 ∈ 〈[x, y]〉. Since x and y

generate T , this shows 〈[x, y]〉 is normal in T . Since T is simple, either 〈[x, y]〉 = 1

or 〈[x, y]〉 = T , which in either case is a contradiction.

Theorem 5.4. If T is a Tarski monster, then Nl(T (1/2)) = 1.

Proof. Assume that 1 6= a ∈ Nl(T (1/2)). Then for all x, y ∈ T (1/2), we have

a�(x�y) = (a�x)�y, that is, ((yx2y)1/2a2(yx2y)1/2)1/2 = (yxa2xy)1/2. Squaring

both sides, we get (yx2y)1/2a2(yx2y)1/2 = yxa2xy, or equivalently,

x−1y−1(yx2y)1/2a2(yx2y)1/2y−1x−1 = a2 .

But x−1y−1(yx2y)1/2(yx2y)1/2y−1x−1 = 1, and therefore x−1y−1(yx2y)1/2 ∈
CT (a2) = 〈a〉 for all x, y ∈ T . Suppose that for some x, y ∈ T , x−1y−1(yx2y)1/2 gen-

erates 〈a〉. For every z ∈ T , (x−1y−1(yx2y)1/2)z = (xz)−1(yz)−1(yz(xz)2yz)1/2 ∈
〈a〉, and so 〈a〉 is a normal subgroup, a contradiction. Thus for all x, y ∈ T ,

x−1y−1(yx2y)1/2 = 1, or yx2y = (yx)2 or xy = yx, another contradiction. Therefore

Nl(T (1/2)) = 1.
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