Periodic lattice-ordered pregroups are distributive

NIKoLAOS GALATOS AND PETER JIPSEN

ABSTRACT. It is proved that any lattice-ordered pregroup that satisfies an identity of
the form ! = ™7 (for the same number of \'"-operations on each side) has a
lattice reduct that is distributive. It follows that every such £-pregroup is embedded
in an f-pregroup of residuated and dually residuated maps on a chain.

Lambek [9] defined pregroups as partially ordered monoids (A4, -, 1, <) with
two additional unary operations !, " that satisfy the inequations

e <1< zat and zx' <1<z z.

These algebras were introduced to model some aspects of grammars, and have
been studied from algebraic and proof-theoretic points of view in several papers
by W. Buskowski [2, 3, 4, 5].

A lattice-ordered pregroup, or (-pregroup, is of the form (L,A,V,-,1,1,7)
where (L,A,V) is a lattice and (L,-,1,%,", <) is a pregroup with respect to
the lattice order. Alternatively, an f-pregroup is a residuated lattice that
satisfies the identities z!"
2" = z\1. Another equivalent definition of ¢-pregroups is that they coincide
with involutive FL-algebras in which -y = z + y and 0 = 1. In particular,

the following (quasi-)identities are easy to derive for (¢-)pregroups:

=2 = 2" and (zy)’ = y'2! where 2! = 1/ and

IlT:I::L'Tl ll:1:1r
(zy)' = ylat  (zy)" =y 2"
ralz =2 zx’r =2
rlogt = 2! z'rz” ="
z(y V 2)w = zyw V zzw z(y A 2)w = zyw A xzw
(xvy) =a'Ay  (zVy) =2 Ay
Ay =a'vy (@AY =a"Vvy

l

2t =2" — Z

l

r=1=axx" < "' =1=2"2x

Lattice-ordered groups are a special case of ¢-pregroups where the identity
z! = 27 holds, which is equivalent to z! (or ") being the inverse of z. It is
well-known that ¢-groups have distributive lattice reducts. Other examples of
{-pregroups occur as subalgebras of the set of finite-to-one order-preserving
functions on Z (where finite-to-one means the preimage of any element is a
finite set). These functions clearly form a lattice-ordered monoid, and if a is

such a function then a'(y) = A\{z € Z|a(z) > y} and a" = \/{z € Z|a(x) < y}.
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FIGURE 1. The {-pregroup of period 2

n

The notation z!" is defined by #!" = z and 2" = (z!")! for n > 0, and
similarly for z”". We say that an f-pregroup is periodic if it satisfies the
identity z!” = 2"" for some positive integer n. The aim of this note is to
prove that if an ¢-pregroup is periodic then the lattice reduct must also be
distributive. For n = 1 this identity defines ¢-groups, but for n = 2 it defines
a strictly bigger subvariety of /-pregroups since it contains the /{-pregroup
generated by the function a : Z — Z defined by a(2m) = a(2m — 1) = 2m for
m € Z. A diagram of this algebra is given in Figure 1. Note that all functions
in this algebra have period 2. Similarly the function a, : Z — Z defined by
an(nm) = ap(nm—1) = --- = a,(nm—(m—1)) = nm generates an ¢-pregroup
that satisfies /" = 2", and all functions in it have period n.

The proof of Theorem 5 below was initially found with the help of the Wald-
meisterIl equational theorem prover [11] and contained 274 lemmas (about
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1900 equational steps). Lemmas 2-4 below were extracted by hand from the
automated proof.

The first lemma is true for any binary operation that distributes over A,V
and has an identity element.

Lemma 1. (1Vz)1Az)=2z=1Az)(1Vzx)
Proof. (1vz)(1Az) = (1Az)V(zAzz) < z < (IVz)A(zVzz) = (IVa)(1Az). O
The next few lemmas are true for ¢-pregroups in general.

Lemma 2.

(i) z(1Azly) = zzl(z Ay)
(ii) z(1Va'y) =zz"(z Vy)
(iii) 1valy=1val(zVvy)
(iv) 1ANz"y=1Az"(x Ay)

Proof. (i) z(1A2'y) = z Azaly = xa'z Axaly = 22! (x Ay), and (ii) is similar.
(iii) 1 valy =1 valz valy =1val(z Vy), and again (iv) is similar. O

Lemma 3. IftAy=2AzandxVy=2xVz then 2ly = 2'z, 2"y = 272,
ya! = za! and ya© = za".

Proof. Assume x Ay=xAzandzVy=zxV z.

By Lemma 2 (i) we have z(1 A xly) = z2l(z Ay) = zal(z A 2) = 2(1 A 2l2),
and similarly from (ii)-(iv) we get z(1Vz"y) = z(1Vz"2), 1 Valy = 1V 2lz
and IAz"y =1Az"2.

Using Lemma 1 zzly = 2(1 A zly)(1V 2ly) = 2(1 A 2l2)(1V 2!2) = zalz,

l Ul l

hence 2'y = rlaaly = 2laxlzs = 2!z

Similarly #"y = 2"z, yo' = z2! and yz" = za". O
Lemma 4. If 2! = 27" then 2! V 2" and ' A 2" are invertible.
Proof. If z!' = 2™ then (2! v 2") = 2" Ax = 2™ Az = (2! vV 2")", hence

(2t v ")zt va") =1, ie. 2! Va" is invertible, and similarly for ' A2". O

Theorem 5. If the identity x'* = 2™ holds in an L-pregroup then the lattice
reduct is distributive.

Proof. Tt is well-known that a lattice is distributive if every element has a
unique relative complement. Hence we assume a, b, c € L satisfy a Ab=a Ac,
aV b= aVcand we have to prove that b = c.

By Lemma 3 we have a'b = alc and a"b = a"¢, so (a' Va")b = albV a"b =
a'cvarc= (a' vV a")c. By Lemma 4 it follows that b = c. O

Note that the converse of Lemma 4 also holds, since if 2! V" and 2! Az" are
invertible then 2! Az = (2! va™)l = (#!va")" =2 Az and 2! Vo = 2" vz,
so as in the proof of Theorem 5 z* = z"".

rm

To extend the proof to subvarieties of {-pregroups defined by z!" = z"" we

first prove a few more lemmas.
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Lemma 6. zV (2" A1) =2z V1

Proof. It suffices to show that z V (z" A1) > 1. We have 1 < (zV1)"(zV1) =
(xv1D)zV(zVv1) <zV(z"Al)since (z V1) <1. O

Lemma 7. zV (yz" Al)y=zVy and z A (z"yV1)y=c Ay

Proof. xV (yz" Al)y =z Vay'y vV ((zy)" Ay =2V (zy' vV ((xy))" A 1))y =
xV (zy' v 1)y by the preceding lemma. The last expression equals =V zy'y Vy,
and since y'y < 1 we have shown that z V (y2" A1)y =z Vy.

The second identity follows from the first by substituting z!,y' for z,y and
then applying ()" to both sides. O

L r

Note that if (L,A,V,-,1,°,") is an ¢-pregroup, then so is the ‘opposite’
algebra (L,A,V,®,1,",!), where z Oy = y - z.

Lemma 8. Ift Ay =xAzand xVy =xV 2z then yrly Ay = zalz A 2,
yrlyVy = zatzVz, 2 vy = 2 v 2 and 2 Ay = 2 A 2. The ‘opposite’
identities with ' replaced by " also hold.

Proof. Assume xt Ay=xAzandxVy==zV z.

By Lemma 3 yrly Ay = zaly Ay < zaly Azzly = z(al A2y = 2(2! Ayl)y =
zaly A zyly < zalz A z, and the reverse inequality is proved by interchanging
1y, z. The second equation has a dual proof.

From these two equations and Lemma 7 we obtain 2!/ vy = /v (yz"" A1)y =
2V (yaly Ay) = 2V (zalz A 2) = 2V (221 A1)z = 2!V 2, and the fourth
equation is proved dually. O

Using the preceding lemma repeatedly, it follows that if z Ay = x A z and
"y 2 and 2" A y= 2™ A 2 for all m € w.
As in Lemma 3, it follows that lemHy = """ ram

for all m € w. Now in the presence of the identity ! = 2", the term
t(x) = ztvallty.. vl produces invertible elements only. Indeed, z'" = 2"
entails 27" = (2/")!" = (2"")" = =, and therefore t(z)! = t(z)". As in the
proof of Theorem 5, if we assume a Ab=aAcand aVb=aV cthen we have

x\/y:x\/zthenxlm Vy=ux
z and a:rmﬂy =z

t(a)b = t(a)e, hence b = c¢. Thus we obtain the following result.

Theorem 9. If the identity =" = z"" holds in an l-pregroup then the lattice
reduct is distributive.

However, it is not known whether the lattice reducts of all ¢-pregroups are
distributive. Tt is currently also not known if the identity (z V1) A (z'V1) =1
holds in every ¢-pregroup (it is implied by distributivity). Recently M. Kinyon
[8] has shown with the help of Prover9 that if an ¢-pregroup is modular then
it is distributive. The following result has been proved in [1] and [10].

Theorem 10. An £-monoid can be embedded in the endomorphism £-monoid
of a chain if and only if -,V distribute over A.
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Recall that a map f from a poset P to a poset Q is called residuated if
there is a map f*: @ — P such that f(p) <q<p < f*(q), for all p € P and
q € Q. Then f* is unique and is called the residual of f, while f is called the
dual residual of f*. It is well-known that residuated maps between posets are
necessarily order-preserving. The map (f*)*, if it exists, is called the second-
order residual of f, and likewise we define higher-order residuals and dual
residuals of f. In [7] (page 206) it is mentioned, using different terminology,
that the set RDR>°(C) of all maps on a chain C that have residuals and dual
residuals of all orders forms a (distributive) ¢-pregroup, under pointwise order
and functional composition. Hence we obtain our final result, which was first
noted in [6].

Corollary 11. Every periodic £-pregroup can be embedded in RDR>(C), for
some chain C.

Proof. Let A be a periodic ¢-pregroup. By the two preceding theorems there
is a chain C and an ¢-monoid embedding h : A — End(C). Since A satisfies
zx” <1< z"x we have

h(z)oh(z") <ide < h(z") o h(x). (%)

The functions h(x) and h(z") are order-preserving, so h(z") is the residual of
h(z). Therefore h(z") = h(x)*, and by substitution h(z"™) = h(z")* = h(x)**,
etc., which shows that residuals h(z)* " of all orders exists in h[A]. Similarly
h(z') is the dual residual of h(z) and dual residuals of all orders exist. Hence
h(z) € RDR>(C). From (x) above it also follows that h(z") = h(z)", and
an analogous argument shows h(z') = h(z)!, thus h : A — RDR>(C) is an
{-pregroup embedding. O
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