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Abstract

We define an index of compatibility for a probabilistic theory (PT).
Quantum mechanics with index 0 and classical probability theory with
index 1 are at the two extremes. In this way, quantum mechanics is at
least as incompatible as any PT. We consider a PT called a concrete
quantum logic that may have compatibility index strictly between 0
and 1, but we have not been able to show this yet. Finally, we show
that observables in a PT can be represented by positive, vector-valued
measures.

1 Observables in Probabilistic Theories

This paper is based on the stimulating article [1] by Busch, Heinosaari and
Schultz. The authors should be congratulated for introducing a useful new
tool for measuring the compatibility of a probabilistic theory (PT). In this
paper, we present a simpler, but coarser, measure of compatibility that we
believe will also be useful.

A probabilistic theory is a o-convex subset K of a real Banach space V.
That is, if 0 < A\; < 1 with Y\, =1l and v; € K, ¢ = 1,2,..., then Y A,
converges in norm to an element of XC. We call the elements of IC states.
There is no loss of generality in assuming that /C generates V in the sense
that the closed linear hull of IC equals V. Denote the collection of Borel



subsets of R” by B(R") and the set of probability measures on B(R") by
M(R™). If € is a PT, an n-dimensional observable on K is a o-affine map
M: K — M(R™). We denote the set of n-dimensional observables by O,,(K)
and write O(K) = O1(K). We call the elements of O(K) observables. For
M e O(K), s e K, A e B(R), we interpret M (s)(A) as the probability that
M has a value in A when the system is in state s.

A set of observables {M, ..., M,} C O(K) is compatible or jointly mea-
surable if there exists an M € O,,(K) such that for every A € B(R) and every
s € K we have

M(s)(AXRx - xR) = M(s)(A)
M(s)(Rx AxRx--- xR) = My(s)(A)

M) (RXxRx--- xRxA)=M,(s)(A)

In this case, we call M a joint observable for {M;,..., M,} and we call
{M,..., M,} the marginals for M. It is clear that if {M;, ..., M,} is com-
patible, then any proper subset is compatible. However, we suspect that the
converse is not true. If a set of observables is not compatible we say it is
incompatible.

It is clear that convex combinations of observables give an observable so
O(K) forms a convex set. In the same way, O, (K) is a convex set. Another
way of forming new observables is by taking functions of an observable. If
f: R — R is a Borel function and M € O(K), the observable f(M): K —
M(R) is defined by f(M)(s)(A) = M(s) (f~'(A)) for all s € K, A € B(R).

Theorem 1.1. If My, My € O(K) are functions of a single observable M,
then My, My are compatible.

Proof. Suppose My = f(M), My = g(M) where f and g are Borel functions.
For A, B € B(R), s € K define M(s) on A x B by

M(s)(Ax B) = M(s) [f(A) ng™"(B)]

By the Hahn extension theorem, M(s) extends to a measure in M (R).
Hence, M € Oy(K) and the marginals of M are f(M) and g(M). We con-
clude that My = f(M) and My = g(M) are compatible O



It follows from Theorem 1.1 that an observable is compatible with any
Borel function of itself and in particular with itself. In a similar way we
obtain the next result.

Theorem 1.2. If My, M, € O(K) are compatible and f, g are Borel func-
tions, then f(My) and g(Ms) are compatible.

Proof. Since My, M, are compatible, they have a joint observable M €
O5(K). For A, B € B(R), s € K define M(s) on A x B by

M(s)(A x B) = M(s) [f(A) x g~ '(B)]

As in the proof of Theorem 1.1, ]\7(5) extends to a measure in M (IR?). Hence,
M € O(K) and the marginals of M are

M(s)(A x R) = M(s) [f7(4) x R] = My(s) [~ (4)] = F(M3)(s)(4)
M(s)(R x A) = M(s) [R x g~ (A)] = Ma(s) [g7(A)] = g(M2)(5)(A)
We conclude that f(M;) and g(M,) are compatible. O

The next result is quite useful and somewhat surprising.

Theorem 1.3. Let sz € OK) fori=1,...,n, j=1,...,m and suppose
{M}, ... ,M"} is compatible, i = 1,...,n. If \; € [0,1] with Y.\, = 1,
1=1,...,n, then

{zn; N M zn: MM zn: A,-M;”}
1= =1 1=1

1s compatible.

Proof. Let M; € O,,(K) be the joint observable for {M},... M™}, i =
1,...,n. Then M =3%"7" , \;M; is an m-dimensional observable with marginals



n

M(s)(AXRx -+ xR) = Z)\Z-]\A/[/i(s)(A xR X xR) = Z)\iM}(s)(A)

M(s)(RxAxRx---XR):iAiM(s)(RxAXRx---xR)

= > AMEs)(4)

—~

M(s)(RxRx---XRXA):Z)\Z-]\A/[;(s)(RxRx---XRXA)
i=1

= S AM(s)(4)

The result now follows O

Corollary 1.4. Let M,N,P € O(K) and X € [0,1]. If M is compatible with
N and P, then M is compatible with AN + (1 — X\)P.

Proof. Since {M, N} and {M, P} are compatible sets, by Theorem 1.3, we
have that M = AM + (1 — A\)M is compatible with AN + (1 — \)P. O

2 Noisy Observables

If p € M(R), we define the trivial observable T,, € O(K) by T,(s) = p for
every s € KC. A trivial observable represents noise in the system. We denote
the set of trivial observables on I by 7 (K). The set 7 (K) is convex with

)\Tp + (1 — )\)Tq = T)\p+(1,)\)q

for every A € [0,1] and p,q € M(R). An observable M € O(K) is compatible
with any T}, € 7(K) and a joint observable M € O5(K) is given by

M(s)(A x B) = p(A)M(s)(B)

If M € OK), T € T(K) and A € [0,1] we consider AM + (1 — X\)T as
the observable M together with noise. Stated differently, we consider AM +

4



(1 — A\)T to be a noisy version of M. The parameter 1 — \ gives a measure
of the proportion of noise and is called the noise inder. Smaller \ gives a
larger proportion of noise. As we shall see, incompatible observables may
have compatible noisy versions.

The next lemma follows directly from Corollary 1.4. It shows that if M
is compatible with N, then M is compatible with any noisy version of V.

Lemma 2.1. If M € O(K) is compatible with N € O(K), then M is com-
patible with AN + (1 — X\)T' for any A € [0,1] and T € T (K).

The following lemma shows that for any M, N € O(K) a noisy version of
N with noise index \ is compatible with any noisy version of M with noise
index 1 — A. The lemma also shows that if M is compatible with a noisy
version of IV, then M is compatible with a still noisier version of V.

Lemma 2.2. Let M,N € O(K) and S,T € T(K). (a) If A € [0,1], then
AM+(1=MN)T and (1—=X)N+AS are compatible. (b) If M is compatible with
AN+(1=N)T, then M is compatible with puN+(1—p)T where 0 < p < X < 1.

Proof. (a) Since {M,S} and {T, N} are compatible sets, by Theorem 1.3
AM + (1 — AT is compatible with AS + (1 — A)N. (b) We can assume
that A > 0 and we let & = p/A so 0 < o < 1. Since {M,AN + (1 = \)T}
and {M, T} are compatible sets, by Theorem 1.3, M = oM + (1 — a)M is
compatible with

a AN+ (1 -NT]+(1—a)T =alN +[a(l =)+ (1 —a)]T
— uN + (1 — )T O

The compatibility region J(My, My, ..., M,) of observables M; € O(K),
i=1,...,n, is the set of points (A1, A2, ..., \,) € [0,1]" for which there exist
T, € T(K),i=1,2,...,n, such that

{ANM; 4+ (1 = N)Ti},

form a compatible set. Thus, J(My, Ms, ..., M,) gives parameters for which
there exist compatible noisy versions of My, Ms, ..., M,. It is clear that 0 =
0,...,0) € J(My, My, ..., M,) and we shall show that J(M;, M, ..., M,)
contains many points. We do not know whether J(My, My, ..., M,) is

symmetric under permutations of the M;. For example, is J(M;, My) =

J(My, My)?



Theorem 2.3. J(M;y, My, ... M,) is a convex subset of [0,1]".

Proof. Suppose (A1, ..., ), (1, ... pn) € J(My, ..., M,). We must show
that

AL - )+ (1= N (s - 1)
= (O A (1= Nty M+ (1= M) € J(My, ..., M)

for all A € [0,1]. Now there exist Sy,...,5,11,...,T, € T(K) such that
MM+ (1 —N)Sit, and {p; M; + (1 — w;)T;};_, are compatible. By The-
orem 1.3 the set of observables

AM; + (1= X)) Si] + (1= A) [paM; + (1 — ) T3]}
={(ANi + (1 = M) My + A1 = X)Si + (1= A) (1 — ) T3}

is compatible. Since

ML= 2) + (1= N1 = 1) = 1= A — g5+ M
=1— AN+ (1= A

letting a; = A\; + (1 — A\)p; we have that

1
Ui_

_1—041'

A = A0S + (1= N1 = w)Ti] € T(K)
Since {o; M; + (1 — a;)U; };_, forms a compatible set, we conclude that
(Oél,...,Oén)EJ(Ml,...7Mn). ]

Let A, = {(A1,...,\y) €10,1]": S° N < 1}. To show that A, forms a
convex subset of [0,1]" C R™, let (A,..., ), (1, -+, i) € A, and X €
[0,1]. Then A(A1, ..., An + (L = XN) (1, ..., ip) € [0,1]" and

n

DTN+ T =Nl =A) N+ (1= m<A+(1-X=1

i=1
Theorem 2.4. If {M,,...,M,} C O(K), then A,, C J(My,..., M,).

Proof. Let 69 = (0,0,...,0) € R", ; = (0,...,0,1,0,...,0) € R", i =
1,...,n where 1 is in the ¢th coordinate. It is clear that

5 € J(My,...,M))NA,, i=0,1,....n
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A= (A,...;\) € A, letting p = > \; we have that 0 < p < 1,
YA+ (1—p)=1and

A= Z%@ + (1 — p)do
i=1

It follows that A, is the convex hull of {dy, d1,...,d,}. Since
{00,01,...,0n,} € J(My,..., M,)
and J(Mj, ..., M,) is convex, it follows that A, € J(M, ..., M,). ]

The n-dimensional compatibility region for PT K is defined by
I () =n{J(My,...,M,): M; € OK),i=1,...,n}

We have that A,, C J,,(K) C [0,1]" and J,(K) is a convex set that gives a
measure of the incompatibility of observables on K. As J,(K) gets smaller,
IC gets more incompatible and the maximal incompatibility is when J,,(K) =
A,,. For the case of quantum states K, the set J5(K) has been considered in
detail in [1].

We now introduce a measure of compatibility that we believe is simpler
and easier to investigate than Jy(M, N) For M, N € O(K), the compatibility
interval I(M,N) is the set of A € [0,1] for which there exists a T € 7 (K)
such that M is compatible with AN + (1 — A\)T. Of course, 0 € T(M, N)
and M and N are compatible if and only if 1 € (M, N). We do not know
whether I(M,N) = I(N,M). It follows from Lemma 2.2(b) that if A\ €
T(M,N)and 0 < u < A, then p € I(M,N). Thus, I(M,N) is an interval
with left endpoint 0. The index of compatibility of M and N is A(M, N) =
sup{A: A € I(M,N)}. We do not know whether A(M, N) € I(M, N) but in
any case [(M,N) = [0, \(M,N)] or I(M,N) = [0, \(M,N)). For a PT K,
we define the interval of compatibility for IC to be

I(K)=n{I(M,N): M\,N € O(K)}
The index of compatibility of K is
AK) =inf {\(M,N): M,N € O(K)}

and I(K) = [0, \(K)] or I(K) = [0, A\(K)). Again, A(K) = 0 gives a measure
of incompatibility of the observables in O(K).
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Example 1. (Classical Probability Theory) Let (€2,.4) be a measurable
space and let V be the Banach space of real-valued measures on A with
the total variation norm. If IC is the o-convex set of probability measures on
A, then K generates V. There are two types of observables on K, the sharp
and fuzzy observables. The sharp observables have the form M; where f is
a measurable function f: Q@ — R and M;(s)(A) = s[f~1(A4)]. If M;, M, are
sharp observables, form the unique 2-dimensional observable M satisfying

—~

M(s)(Ax B) = s [f(A)ng " (B)]

Then M is a joint observable for My, M, so My and M, are compatible.
The unsharp observables are obtained as follows. Let F(£2) be the set of
measurable functions f: Q@ — [0,1]. Let M: B(R) — F() satisty ]\/Z(R) =
1, M(UA;) = S M(4;). An unsharp observable has the form

M(s)(A) = / M(A)ds

Two unsharp observables M, N are also compatible because we can form the
joint observable M given by

VI(S)(A x B) = / V(AN (B)ds

We conclude that J(K) = [0,1]x[0, 1] and I(K) = [0, 1] so K has the maximal
amount of compatibility.

Example 2. (Quantum Theory) Let H be a separable complex Hilbert space
and let IC be the o-convex set of all trace 1 positive operators on H. Then K
generates the Banach space of self-adjoint trace-class operators with the trace
norm. It is well known that M € O(K) if and only if there exists a positive
operator-valued measure (POVM) P such that M(s)(A) = tr[sP(A)] for
every s € K, A € B(R). It is shown in [1] that if dim H = oo, then there
exist My, My € O(K) such that Jo(My, M) = As and hence J(K) = As.
If dim H < oo, then J(K) is not known, although partial results have been
obtained and it is known that J(K) — A, as dim H — oo

Now let H be an arbitrary complex Hilbert space with dim H > 2. Al-
though the Pauli matrices o, 0, are 2-dimensional, we can extend them
from a 2-dimensional subspace Hy of H to all of H by defining 0,1 = 0 for
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all v € Hg. Define the POVMs M,, M, on H by M,(+1) = (I £ 0,),
M, (£1) = 5(I £ 0,). It is shown in [1] that

J(M, My) = {0 ) € [0,1] % 0,1] - ¥ 4 p? < 1}

Thus, J(M,, M,) is a quadrant of the unit disk. We conclude that M, is
compatible with pM, + (1 — )T for T € T(K) if and only if 1 + p? < 1.
Therefore, u = 0, so I(M,, M,) = {0} and A\(M,, M,) = 0. Thus, I(K) = {0}
and A(KC) = 0. We conclude that quantum mechanics has the smallest index
of compatibility possible for a PT. The index of compatibility for a classical
system is 1, so we have the two extremes. It would be interesting to find
A(K) for other PTs.

3 Concrete Quantum Logics

We now consider a PT that seems to be between the classical and quantum
PTs of Examples 1 and 2. A collection of subsets A of a set Q) is a o-class if
e A, A° € A whenever A € A and if A; are mutually disjoint, ¢ = 1,2, .. .,
then UA; € A. If Ais a o-class on Q, we call (€2, .A) a concrete quantum logic.
A o-state on A is a map s: A — [0,1] such that s(2) = 1 and if A; € A
are mutually disjoint, then s(UA;) = > s(A;). If K is the set of o-states
on (2, A), we call K a concrete quantum logic PT. Let A, be the o-algebra
generated by A. A o-state s is classical if there exists a probability measure
on A, such that s = p | A. Asin the classical case, an observable is sharp if it
has the form M;(s)(A) = s[f~!(A)] for an A-measurable function f: Q — R.
If f and g are A-measurable functions satisfying f~'(A4) N g~ (B) € A for
all A, B € B(R), then My and M, are compatible because they have a joint
observable M satisfying M(s)(A x B) = s[f~'(A) Ng~*(B)] for all s € K,
A, B € B(R). We do not know whether M; and M, compatible implies that
1 (A)Nng 1(B) € A holds for every A, B € B(R), although we suspect it
does not.

Example 3.This is a simple example of a concrete quantum logic. Let 2 =
{1,2,3,4} and let A be the collection of subsets of (2 with even cardinality.
Then

A={0,0,{1,2},{3,4},{1,3},{2,4},{1,4},{2,3}}



Let IC be the sets of all states on A. Letting a = {1,2}, o’ = {3,4}, b = {1, 3},
b ={3,4}, c = {1,4}, ¢ = {2,3} we can represent an s € IC by

5= (S(a)v S(a/)v S(b)78(b,)7 8(0)78(0,»
= (s(a),1 —s(a),s(b),1 —s(b),s(c),1 —s(c))
Thus, every s € K has the form
S = ()\1, 1 — )\1,)\2,1 — )\2,)\3, 1 — )\3)

for 0 < \; < 1,7 = 1,2,3. The pure (extremal) classical states are the
0-1 states: ¢; = (1,0,1,0,1,0), 3 = (1,0,0,1,0,1), 63 = (0,1,1,0,0,1),
d4 = (0,1,0,1,1,0). The pure nonclassical states are the 0-1 states: v =
1—51, Yo = 1—527 Y3 = 1 —(53, Y4 = 1—54 where 1 = (1,1,1,1,1,1). For
example, to see that v is not classical, we have that v, = (0,1,0,1,0,1).
Hence, v ({3,4}) = 71 ({2,4}) = 11 ({2,3}) = 1. If there exists a probability
measure g such that v, = p | A we would have o ({1}) = p({2}) = ({3}) =
i ({4}) = 0 which is a contradiction. The collection of sharp observable is
very limited because a measurable function f: {2 — R can have at most two
values. Thus, if M; is a sharp observable there exists a,b € R such that
M;¢(s) ({a,b}) = 1 for every s € K. There are many observables with more
than two values (non-binary observables) and these are not sharp. Even for
this simple example, it appears to be challenging to investigate the region
and interval of compatibility.

4 Vector-Valued Measures

Let IC be a PT with generated Banach space V and V* be the Banach space
dual of V. A normalized vector-valued measure (NVM) for K is a map
I': B(R) — V* such that A — T'(A)(s) € M(R) for every s € K. Thus,
' satisfies the conditions:

(1) I'(R)(s) =1 for every s € K,

(2) 0<T(A)(s) <1 forevery s € K, Ac B(R),

(3) If A; € B(R) are mutually disjoint, ¢ = 1,2, ..., then
L(UA)(s) = Y T(A:)(s)

for every s € K.
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This section shows that there is a close connection between observables on

IC and NVMs for K.

Theorem 4.1. IfT" is a NVM for IC, then M : K — M(R) given by
M(s)(A) =T(A)(s), s e K, A e B(R), is an observable on K.

Proof. Since A — TI'(A)(s) € M(R) we have that A — M(s)(A) € M(R).
Let A; € [0,1) with Y_ A\, =1, s, € K, 4 = 1,2,..., and suppose that s =
> Aisi. Then lim Y A\;s; = s in norm and since s — I'(A)(s) € V*, for

every A € B(R) we have
M()(A) = M (37 Aiss ) (4) = D(A) (3o Asi) =T(4) ( Jim 3 A)
= lim I'(A) (i >\z'3¢> = lim i A(A)(s:)

— nh—{go Z NiM (s;)(A) = Z AiM(s;)(A)

i=1
It follows that M (> Ais;) = > NiM(s;) so M € O(K). O

The converse of Theorem 4.1 holds if some mild conditions are satisfied.
To avoid some topological and measure-theoretic technicalities, we consider
the special case where V is finite-dimensional. Assuming that IC is the base
of a generating positive cone VT, we have that every element v € V' has a
unique form v = as, « > 0, s € K and that V = V" &V~ where V- = —VP*
and VT NV~ ={0}. If M € O(K), then for every A € B(R), s — M(s)(A)
is a convex, real-valued function on K. A standard argument shows that
this function has a unique linear extension M (A) = V* for every A € B(R).
Hence -
R(A)(s) = M(s)(4) (4.1)

for every s € K, A € B(R). Since A +— ]\/4\(14)(3) = M(s)(A) € M(R) we
conclude that A — M(A) is a NVM and M is the unique NVM satisfying
(4.1). Tt follows that the converse of Theorem 4.1 holds in this case.

Example 1. (Classical Probability Theory) In this example V* is the Ba-
nach space of bounded measurable functions f: @ — R with norm ||f|| =
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sup | f(w)| < oo and duality given by

<mﬂ:fwwa/Mu

The function 1(w) = 1 for every w € € is the natural unit satisfying 1(u) =1
for every u € K. In this case, K is a base for the generating positive cone V'
of bounded measures and the converse of Theorem 4.1 holds. Then a NVM
I" has the form 0 < T'(A)(w) < 1 for every A € B(R), w € 2 and I'(R) = 1.
Thus I'(A) € F(Q) and if M is the corresponding observable, then

In particular, if 7, € 7 (K) then the corresponding NVM I, has the form

Lp(A) (1) = Tp(1)(A) = p(A)

so I',(A) is the constant function p(A). Moreover, if M, € O(K) is sharp,
then the corresponding NVM I'y satisfies

[ T = )00 = My 4) = o [ = [ xpscnd
Hence, T'f(A) = xf-14) for every A € B(R).

Example 2. (Quantum Theory) In this example V* is the Banach space
B(H) of bounded linear operators on H with norm

IL] = sup {|| L] = [l = 1}

and duality given by

(s, L) = L(a) = tr(sL)
The identity operator I is the natural unit satisfying I(s) = 1 for all s € K.
In this case, K is a base for the generating cone V1 of positive trace class
operators and the converse of Theorem 4.1 holds, If T is a NVM, then I'(A)
is a positive operator satisfying 0 < I'(A) < I called an effect and T'(R) = I.

According to the converse of Theorem 4.1, if M is an observable, then there
exists a POVM I such that

M(s)(A) = tr[sT(A)]
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for every s € K and A € B(R). In particular, if 7, € 7(K), then the
corresponding NVM I'), has the form

tr[sUp(A)] = Tp(A)(s) = Tp(s)(A) = p(A) = tr [sp(A)]]
so [',(A) = p(A)I for all A € B(R).

Similar to a NVM, we define an n-dimensional NVM to be a map
I': B(R") — V* such that A — I'(A)(s) € M(R?) for every s € K. More-
over, a set {I'1,...,[',} of NVMs for K is compatible if there exists an n-
dimensional NVM I'" such that

FAXRXx - xR)=T4(A)

MRxRx---xRxA)=T,(A)
for every A € B(R). The proof of the following theorem is straightforward.

Theorem 4.2. If {M,,...,M,} CO(K) and{T'1,...T,} are the correspond-
ing NVM for IC, then { M, ..., M,} are compatible if and only if {I'y,..., Ty}
are compatible.
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