COMPATIBILITY FOR PROBABILISTIC THEORIES

Stan Gudder
Department of Mathematics
University of Denver
Denver, Colorado 80208
sgudder@du.edu

Abstract

We define an index of compatibility for a probabilistic theory (PT). Quantum mechanics with index 0 and classical probability theory with index 1 are at the two extremes. In this way, quantum mechanics is at least as incompatible as any PT. We consider a PT called a concrete quantum logic that may have compatibility index strictly between 0 and 1, but we have not been able to show this yet. Finally, we show that observables in a PT can be represented by positive, vector-valued measures.

1 Observables in Probabilistic Theories

This paper is based on the stimulating article [1] by Busch, Heinosaari and Schultz. The authors should be congratulated for introducing a useful new tool for measuring the compatibility of a probabilistic theory (PT). In this paper, we present a simpler, but coarser, measure of compatibility that we believe will also be useful.

A probabilistic theory is a \(\sigma \)-convex subset \(\mathcal{K} \) of a real Banach space \(\mathcal{V} \). That is, if \(0 \leq \lambda_i \leq 1 \) with \(\sum \lambda_i = 1 \) and \(v_i \in \mathcal{K}, i = 1, 2, \ldots, \) then \(\sum \lambda_i v_i \) converges in norm to an element of \(\mathcal{K} \). We call the elements of \(\mathcal{K} \) states. There is no loss of generality in assuming that \(\mathcal{K} \) generates \(\mathcal{V} \) in the sense that the closed linear hull of \(\mathcal{K} \) equals \(\mathcal{V} \). Denote the collection of Borel
subsets of \mathbb{R}^n by $\mathcal{B}(\mathbb{R}^n)$ and the set of probability measures on $\mathcal{B}(\mathbb{R}^n)$ by $\mathcal{M}(\mathbb{R}^n)$. If \mathcal{K} is a PT, an n-dimensional observable on \mathcal{K} is a σ-affine map $M: \mathcal{K} \to \mathcal{M}(\mathbb{R}^n)$. We denote the set of n-dimensional observables by $\mathcal{O}_n(\mathcal{K})$ and write $\mathcal{O}(\mathcal{K}) = \mathcal{O}_1(\mathcal{K})$. We call the elements of $\mathcal{O}(\mathcal{K})$ observables. For $M \in \mathcal{O}(\mathcal{K})$, $s \in \mathcal{K}$, $A \in \mathcal{B}(\mathbb{R})$, we interpret $M(s)(A)$ as the probability that M has a value in A when the system is in state s.

A set of observables $\{M_1, \ldots, M_n\} \subseteq \mathcal{O}(\mathcal{K})$ is compatible or jointly measurable if there exists an $M \in \mathcal{O}_n(\mathcal{K})$ such that for every $A \in \mathcal{B}(\mathbb{R})$ and every $s \in \mathcal{K}$ we have

\[
M(s)(\mathbb{R} \times A \times \ldots \times \mathbb{R}) = M_1(s)(A) \\
M(s)(\mathbb{R} \times \mathbb{R} \times A \times \ldots \times \mathbb{R}) = M_2(s)(A) \\
\vdots \\
M(s)(\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R} \times A) = M_n(s)(A)
\]

In this case, we call M a joint observable for $\{M_1, \ldots, M_n\}$ and we call $\{M_1, \ldots, M_n\}$ the marginals for M. It is clear that if $\{M_1, \ldots, M_n\}$ is compatible, then any proper subset is compatible. However, we suspect that the converse is not true. If a set of observables is not compatible we say it is incompatible.

It is clear that convex combinations of observables give an observable so $\mathcal{O}(\mathcal{K})$ forms a convex set. In the same way, $\mathcal{O}_n(\mathcal{K})$ is a convex set. Another way of forming new observables is by taking functions of an observable. If $f: \mathbb{R} \to \mathbb{R}$ is a Borel function and $M \in \mathcal{O}(\mathcal{K})$, the observable $f(M): \mathcal{K} \to \mathcal{M}(\mathbb{R})$ is defined by $f(M)(s)(A) = M(s)(f^{-1}(A))$ for all $s \in \mathcal{K}$, $A \in \mathcal{B}(\mathbb{R})$.

Theorem 1.1. If $M_1, M_2 \in \mathcal{O}(\mathcal{K})$ are functions of a single observable M, then M_1, M_2 are compatible.

Proof. Suppose $M_1 = f(M)$, $M_2 = g(M)$ where f and g are Borel functions. For $A, B \in \mathcal{B}(\mathbb{R})$, $s \in \mathcal{K}$ define $\tilde{M}(s)$ on $A \times B$ by

\[
\tilde{M}(s)(A \times B) = M(s)\left[f^{-1}(A) \cap g^{-1}(B)\right]
\]

By the Hahn extension theorem, $\tilde{M}(s)$ extends to a measure in $\mathcal{M}(\mathbb{R}^2)$. Hence, $\tilde{M} \in \mathcal{O}_2(\mathcal{K})$ and the marginals of \tilde{M} are $f(M)$ and $g(M)$. We conclude that $M_1 = f(M)$ and $M_2 = g(M)$ are compatible.

\[\blacksquare\]
It follows from Theorem 1.1 that an observable is compatible with any Borel function of itself and in particular with itself. In a similar way we obtain the next result.

Theorem 1.2. If $M_1, M_2 \in \mathcal{O}(\mathcal{K})$ are compatible and f, g are Borel functions, then $f(M_1)$ and $g(M_2)$ are compatible.

Proof. Since M_1, M_2 are compatible, they have a joint observable $M \in \mathcal{O}_2(\mathcal{K})$. For $A, B \in \mathcal{B}(\mathbb{R}), s \in \mathcal{K}$ define $\tilde{M}(s)$ on $A \times B$ by

$$\tilde{M}(s)(A \times B) = M(s) \left[f^{-1}(A) \times g^{-1}(B) \right]$$

As in the proof of Theorem 1.1, $\tilde{M}(s)$ extends to a measure in $\mathcal{M}(\mathbb{R}^2)$. Hence, $\tilde{M} \in \mathcal{O}(\mathcal{K})$ and the marginals of \tilde{M} are

$$\tilde{M}(s)(A \times \mathbb{R}) = M(s) \left[f^{-1}(A) \times \mathbb{R} \right] = M_1(s) \left[f^{-1}(A) \right] = f(M_1)(s)(A)$$

$$\tilde{M}(s)(\mathbb{R} \times A) = M(s) \left[\mathbb{R} \times g^{-1}(A) \right] = M_2(s) \left[g^{-1}(A) \right] = g(M_2)(s)(A)$$

We conclude that $f(M_1)$ and $g(M_2)$ are compatible. □

The next result is quite useful and somewhat surprising.

Theorem 1.3. Let $M_i^j \in \mathcal{O}(\mathcal{K})$ for $i = 1, \ldots, n, j = 1, \ldots, m$ and suppose $\{M_i^1, \ldots, M_i^m\}$ is compatible, $i = 1, \ldots, n$. If $\lambda_i \in [0, 1]$ with $\sum \lambda_i = 1$, $i = 1, \ldots, n$, then

$$\left\{ \sum_{i=1}^n \lambda_i M_i^1, \sum_{i=1}^n \lambda_i M_i^2, \ldots, \sum_{i=1}^n \lambda_i M_i^m \right\}$$

is compatible.

Proof. Let $\tilde{M}_i \in \mathcal{O}_m(\mathcal{K})$ be the joint observable for $\{M_i^1, \ldots, M_i^m\}$, $i = 1, \ldots, n$. Then $\tilde{M} = \sum_{i=1}^n \lambda_i \tilde{M}_i$ is an m-dimensional observable with marginals
\[\widetilde{M}(s)(A \times \mathbb{R} \times \cdots \times \mathbb{R}) = \sum_{i=1}^{n} \lambda_i \widetilde{M}_i(s)(A \times \mathbb{R} \times \cdots \times \mathbb{R}) = \sum_{i=1}^{n} \lambda_i M_i^1(s)(A) \]

\[\widetilde{M}(s)(\mathbb{R} \times A \times \mathbb{R} \times \cdots \times \mathbb{R}) = \sum_{i=1}^{n} \lambda_i \widetilde{M}_i(s)(\mathbb{R} \times A \times \mathbb{R} \times \cdots \times \mathbb{R}) = \sum_{i=1}^{n} \lambda_i M_i^2(s)(A) \]

\[\vdots \]

\[\widetilde{M}(s)(\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} \times A) = \sum_{i=1}^{n} \lambda_i \widetilde{M}_i(s)(\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} \times A) = \sum_{i=1}^{n} \lambda_i M_i^m(s)(A) \]

The result now follows \(\square\)

Corollary 1.4. Let \(M, N, P \in O(K)\) and \(\lambda \in [0, 1]\). If \(M\) is compatible with \(N\) and \(P\), then \(M\) is compatible with \(\lambda N + (1 - \lambda)P\).

Proof. Since \(\{M, N\}\) and \(\{M, P\}\) are compatible sets, by Theorem 1.3, we have that \(M = \lambda M + (1 - \lambda)M\) is compatible with \(\lambda N + (1 - \lambda)P\). \(\square\)

2 Noisy Observables

If \(p \in \mathcal{M}(\mathbb{R})\), we define the trivial observable \(T_p \in \mathcal{O}(K)\) by \(T_p(s) = p\) for every \(s \in K\). A trivial observable represents noise in the system. We denote the set of trivial observables on \(K\) by \(T(K)\). The set \(T(K)\) is convex with

\[\lambda T_p + (1 - \lambda)T_q = T_{\lambda p + (1 - \lambda)q} \]

for every \(\lambda \in [0, 1]\) and \(p, q \in \mathcal{M}(\mathbb{R})\). An observable \(M \in \mathcal{O}(K)\) is compatible with any \(T_p \in \mathcal{T}(K)\) and a joint observable \(\widetilde{M} \in \mathcal{O}_2(K)\) is given by

\[\widetilde{M}(s)(A \times B) = p(A)M(s)(B) \]

If \(M \in \mathcal{O}(K)\), \(T \in \mathcal{T}(K)\) and \(\lambda \in [0, 1]\) we consider \(\lambda M + (1 - \lambda)T\) as the observable \(M\) together with noise. Stated differently, we consider \(\lambda M + \).
(1 − λ)T to be a noisy version of M. The parameter 1 − λ gives a measure of the proportion of noise and is called the noise index. Smaller λ gives a larger proportion of noise. As we shall see, incompatible observables may have compatible noisy versions.

The next lemma follows directly from Corollary 1.4. It shows that if M is compatible with N, then M is compatible with any noisy version of N.

Lemma 2.1. If $M \in \mathcal{O}(\mathcal{K})$ is compatible with $N \in \mathcal{O}(\mathcal{K})$, then M is compatible with $\lambda N + (1 − \lambda) T$ for any $\lambda \in [0, 1]$ and $T \in \mathcal{T}(\mathcal{K})$.

The following lemma shows that for any $M, N \in \mathcal{O}(\mathcal{K})$ a noisy version of N with noise index λ is compatible with any noisy version of M with noise index $1 − \lambda$. The lemma also shows that if M is compatible with a noisy version of N, then M is compatible with a still noisier version of N.

Lemma 2.2. Let $M, N \in \mathcal{O}(\mathcal{K})$ and $S, T \in \mathcal{T}(\mathcal{K})$. (a) If $\lambda \in [0, 1]$, then $\lambda M + (1 − \lambda) T$ and $(1 − \lambda) N + \lambda S$ are compatible. (b) If M is compatible with $\lambda N + (1 − \lambda) T$, then M is compatible with $\mu N + (1 − \mu) T$ where $0 \leq \mu \leq \lambda \leq 1$.

Proof. (a) Since $\{M, S\}$ and $\{T, N\}$ are compatible sets, by Theorem 1.3 $\lambda M + (1 − \lambda) T$ is compatible with $\lambda S + (1 − \lambda) N$. (b) We can assume that $\lambda > 0$ and we let $\alpha = \mu / \lambda$ so $0 \leq \alpha \leq 1$. Since $\{M, \lambda N + (1 − \lambda) T\}$ and $\{M, T\}$ are compatible sets, by Theorem 1.3, $M = \alpha M + (1 − \alpha) M$ is compatible with

$$
\alpha [\lambda N + (1 − \lambda) T] + (1 − \alpha) T = \alpha \lambda N + [\alpha(1 − \lambda) + (1 − \alpha)] T
$$

$$
= \mu N + (1 − \mu) T \quad \Box
$$

The compatibility region $J(M_1, M_2, \ldots, M_n)$ of observables $M_i \in \mathcal{O}(\mathcal{K})$, $i = 1, \ldots, n$, is the set of points $(\lambda_1, \lambda_2, \ldots, \lambda_n) \in [0, 1]^n$ for which there exist $T_i \in \mathcal{T}(\mathcal{K})$, $i = 1, 2, \ldots, n$, such that

$$
\{\lambda_i M_i + (1 − \lambda_i) T_i\}_{i=1}^n
$$

form a compatible set. Thus, $J(M_1, M_2, \ldots, M_n)$ gives parameters for which there exist compatible noisy versions of M_1, M_2, \ldots, M_n. It is clear that $0 = (0, \ldots, 0) \in J(M_1, M_2, \ldots, M_n)$ and we shall show that $J(M_1, M_2, \ldots, M_n)$ contains many points. We do not know whether $J(M_1, M_2, \ldots, M_n)$ is symmetric under permutations of the M_i. For example, is $J(M_1, M_2) = J(M_2, M_1)$?
Theorem 2.3. \(J(M_1, M_2, \ldots M_n) \) is a convex subset of \([0, 1]^n\).

Proof. Suppose \((\lambda_1, \ldots, \lambda_n), (\mu_1, \ldots, \mu_n) \in J(M_1, \ldots, M_n)\). We must show that

\[
\lambda(\lambda_1, \ldots, \lambda_n) + (1 - \lambda)(\mu_1, \ldots, \mu_n) = (\lambda\lambda_1 + (1 - \lambda)\mu_1, \ldots, \lambda\lambda_n + (1 - \lambda)\mu_n) \in J(M_1, \ldots, M_n)
\]

for all \(\lambda \in [0, 1]\). Now there exist \(S_1, \ldots, S_n, T_1, \ldots, T_n \in T(\mathcal{K})\) such that \(\{\lambda_iM_i + (1 - \lambda_i)S_i\}_{i=1}^n\) and \(\{\mu_iM_i + (1 - \mu_i)T_i\}_{i=1}^n\) are compatible. By Theorem 1.3 the set of observables

\[
\{\lambda [\lambda_iM_i + (1 - \lambda_i)S_i] + (1 - \lambda) [\mu_iM_i + (1 - \mu_i)T_i]\}
\]

is compatible. Since

\[
\lambda(1 - \lambda_i) + (1 - \lambda)(1 - \mu_i) = 1 - \lambda\lambda_i - \mu_i + \lambda\mu_i
\]

letting \(\alpha_i = \lambda\lambda_i + (1 - \lambda)\mu_i\) we have that

\[
U_i = \frac{1}{1 - \alpha_i} [\lambda(1 - \lambda_i)S_i + (1 - \lambda)(1 - \mu_i)T_i] \in T(\mathcal{K})
\]

Since \(\{\alpha_iM_i + (1 - \alpha_i)U_i\}_{i=1}^n\) forms a compatible set, we conclude that \((\alpha_1, \ldots, \alpha_n) \in J(M_1, \ldots, M_n)\).

\(\square\)

Let \(\Delta_n = \{(\lambda_1, \ldots, \lambda_n) \in [0, 1]^n : \sum \lambda_i \leq 1\}\). To show that \(\Delta_n\) forms a convex subset of \([0, 1]^n \subseteq \mathbb{R}^n\), let \((\lambda_1, \ldots, \lambda_n), (\mu_1, \ldots, \mu_n) \in \Delta_n\) and \(\lambda \in [0, 1]\). Then \(\lambda(\lambda_1, \ldots, \lambda_n) + (1 - \lambda)(\mu_1, \ldots, \mu_n) \in [0, 1]^n\) and

\[
\sum_{i=1}^n [\lambda\lambda_i + (1 - \lambda)\mu_i] = \lambda \sum \lambda_i + (1 - \lambda) \sum \mu_i \leq \lambda + (1 - \lambda) = 1
\]

Theorem 2.4. If \(\{M_1, \ldots, M_n\} \subseteq \mathcal{O}(\mathcal{K})\), then \(\Delta_n \subseteq J(M_1, \ldots, M_n)\).

Proof. Let \(\delta_0 = (0, 0, \ldots, 0) \in \mathbb{R}^n\), \(\delta_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{R}^n\), \(i = 1, \ldots, n\) where 1 is in the \(i\)th coordinate. It is clear that

\[
\delta_i \in J(M_1, \ldots, M_n) \cap \Delta_n, \quad i = 0, 1, \ldots, n
\]
If $\lambda = (\lambda_1, \ldots, \lambda_n) \in \Delta_n$, letting $\mu = \sum \lambda_i$ we have that $0 \leq \mu \leq 1$,
$$
\lambda = \sum_{i=1}^{n} \lambda_i \delta_i + (1 - \mu) \delta_0
$$

It follows that Δ_n is the convex hull of $\{\delta_0, \delta_1, \ldots, \delta_n\}$. Since
$$
\{\delta_0, \delta_1, \ldots, \delta_n\} \subseteq J(M_1, \ldots, M_n)
$$

and $J(M_1, \ldots, M_n)$ is convex, it follows that $\Delta_n \in J(M_1, \ldots, M_n)$. \hfill \Box

The n-dimensional compatibility region for PT \mathcal{K} is defined by
$$
J_n(\mathcal{K}) = \cap \{J(M_1, \ldots, M_n) : M_i \in \mathcal{O}(\mathcal{K}), i = 1, \ldots, n\}
$$

We have that $\Delta_n \subseteq J_n(\mathcal{K}) \subseteq [0,1]^n$ and $J_n(\mathcal{K})$ is a convex set that gives a measure of the incompatibility of observables on \mathcal{K}. As $J_n(\mathcal{K})$ gets smaller, \mathcal{K} gets more incompatible and the maximal incompatibility is when $J_n(\mathcal{K}) = \Delta_n$. For the case of quantum states \mathcal{K}, the set $J_2(\mathcal{K})$ has been considered in [1].

We now introduce a measure of compatibility that we believe is simpler and easier to investigate than $J_2(M, N)$ For $M, N \in \mathcal{O}(\mathcal{K})$, the compatibility interval $I(M, N)$ is the set of $\lambda \in [0,1]$ for which there exists a $T \in T(\mathcal{K})$ such that M is compatible with $\lambda N + (1 - \lambda)T$. Of course, $0 \in T(M, N)$ and M and N are compatible if and only if $1 \in I(M, N)$. We do not know whether $I(M, N) = I(N, M)$. It follows from Lemma 2.2(b) that if $\lambda \in T(M, N)$ and $0 \leq \mu \leq \lambda$, then $\mu \in I(M, N)$. Thus, $I(M, N)$ is an interval with left endpoint 0. The index of compatibility of M and N is $\lambda(M, N) = \sup \{\lambda : \lambda \in I(M, N)\}$. We do not know whether $\lambda(M, N) \in I(M, N)$ but in any case $I(M, N) = [0, \lambda(M, N)]$ or $I(M, N) = [0, \lambda(M, N))$. For a PT \mathcal{K}, we define the interval of compatibility for \mathcal{K} to be
$$
I(\mathcal{K}) = \cap \{I(M, N) : M, N \in \mathcal{O}(\mathcal{K})\}
$$

The index of compatibility of \mathcal{K} is
$$
\lambda(\mathcal{K}) = \inf \{\lambda(M, N) : M, N \in \mathcal{O}(\mathcal{K})\}
$$

and $I(\mathcal{K}) = [0, \lambda(\mathcal{K})]$ or $I(\mathcal{K}) = [0, \lambda(\mathcal{K}))$. Again, $\lambda(\mathcal{K}) = 0$ gives a measure of incompatibility of the observables in $\mathcal{O}(\mathcal{K})$. 7
Example 1. (Classical Probability Theory) Let (Ω, \mathcal{A}) be a measurable space and let \mathcal{V} be the Banach space of real-valued measures on \mathcal{A} with the total variation norm. If \mathcal{K} is the σ-convex set of probability measures on \mathcal{A}, then \mathcal{K} generates \mathcal{V}. There are two types of observables on \mathcal{K}, the sharp and fuzzy observables. The sharp observables have the form M_f where f is a measurable function $f: \Omega \to \mathbb{R}$ and $M_f(s)(A) = s[f^{-1}(A)]$. If M_f, M_g are sharp observables, form the unique 2-dimensional observable \tilde{M} satisfying

$$\tilde{M}(s)(A \times B) = s[f^{-1}(A) \cap g^{-1}(B)]$$

Then \tilde{M} is a joint observable for M_f, M_g so M_f and M_g are compatible. The unsharp observables are obtained as follows. Let $\mathcal{F}(\Omega)$ be the set of measurable functions $f: \Omega \to [0, 1]$. Let $\tilde{M}: \mathcal{B}(\mathbb{R}) \to \mathcal{F}(\Omega)$ satisfy $\tilde{M}(\mathbb{R}) = 1$, $\tilde{M}(\bigcup A_i) = \sum \tilde{M}(A_i)$. An unsharp observable has the form

$$M(s)(A) = \int \tilde{M}(A)ds$$

Two unsharp observables M, N are also compatible because we can form the joint observable \tilde{M} given by

$$\tilde{M}(S)(A \times B) = \int \tilde{M}(A)\tilde{N}(B)ds$$

We conclude that $J(\mathcal{K}) = [0, 1] \times [0, 1]$ and $I(\mathcal{K}) = [0, 1]$ so \mathcal{K} has the maximal amount of compatibility.

Example 2. (Quantum Theory) Let H be a separable complex Hilbert space and let \mathcal{K} be the σ-convex set of all trace 1 positive operators on H. Then \mathcal{K} generates the Banach space of self-adjoint trace-class operators with the trace norm. It is well known that $M \in \mathcal{O}(\mathcal{K})$ if and only if there exists a positive operator-valued measure (POVM) P such that $M(s)(A) = \text{tr}[sP(A)]$ for every $s \in \mathcal{K}$, $A \in \mathcal{B}(\mathbb{R})$. It is shown in [1] that if $\dim H = \infty$, then there exist $M_1, M_2 \in \mathcal{O}(\mathcal{K})$ such that $J_2(M_1, M_2) = \Delta_2$ and hence $J(\mathcal{K}) = \Delta_2$. If $\dim H < \infty$, then $J(\mathcal{K})$ is not known, although partial results have been obtained and it is known that $J(\mathcal{K}) \to \Delta_2$ as $\dim H \to \infty$.

Now let H be an arbitrary complex Hilbert space with $\dim H \geq 2$. Although the Pauli matrices σ_x, σ_y are 2-dimensional, we can extend them from a 2-dimensional subspace H_0 of H to all of H by defining $\sigma_x \psi = 0$ for
all \(\psi \in H_{0+}^1 \). Define the POVMs \(M_x, M_y \) on \(H \) by \(M_x(\pm 1) = \frac{1}{2}(I \pm \sigma_x) \),
\(M_y(\pm 1) = \frac{1}{2}(I \pm \sigma_y) \). It is shown in [1] that
\[
J(M_x, M_y) = \{ (\lambda, \mu) \in [0, 1] \times [0, 1] : \lambda^2 + \mu^2 \leq 1 \}
\]
Thus, \(J(M_x, M_y) \) is a quadrant of the unit disk. We conclude that \(M_x \) is compatible with \(\mu M_y + (1 - \mu)T \) for \(T \in T(\mathcal{K}) \) if and only if \(1 + \mu^2 \leq 1 \). Therefore, \(\mu = 0 \), so \(I(M_x, M_y) = \{ 0 \} \) and \(\lambda(M_x, M_y) = 0 \). Thus, \(I(\mathcal{K}) = \{ 0 \} \) and \(\lambda(\mathcal{K}) = 0 \). We conclude that quantum mechanics has the smallest index of compatibility possible for a PT. The index of compatibility for a classical system is 1, so we have the two extremes. It would be interesting to find \(\lambda(\mathcal{K}) \) for other PTs.

3 Concrete Quantum Logics

We now consider a PT that seems to be between the classical and quantum PTs of Examples 1 and 2. A collection of subsets \(\mathcal{A} \) of a set \(\Omega \) is a \(\sigma \)-class if \(\emptyset \in \mathcal{A}, A^c \in \mathcal{A} \) whenever \(A \in \mathcal{A} \) and if \(A_i \) are mutually disjoint, \(i = 1, 2, \ldots, \), then \(\bigcup A_i \in \mathcal{A} \). If \(\mathcal{A} \) is a \(\sigma \)-class on \(\Omega \), we call \((\Omega, \mathcal{A})\) a concrete quantum logic. A \(\sigma \)-state on \(\mathcal{A} \) is a map \(s : \mathcal{A} \to [0, 1] \) such that \(s(\Omega) = 1 \) and if \(A_i \in \mathcal{A} \) are mutually disjoint, then \(s(\bigcup A_i) = \sum s(A_i) \). If \(\mathcal{K} \) is the set of \(\sigma \)-states on \((\Omega, \mathcal{A})\), we call \(\mathcal{K} \) a concrete quantum logic PT. Let \(\mathcal{A}_\sigma \) be the \(\sigma \)-algebra generated by \(\mathcal{A} \). A \(\sigma \)-state \(s \) is classical if there exists a probability measure \(\mu \) on \(\mathcal{A}_\sigma \) such that \(s = \mu | \mathcal{A} \). As in the classical case, an observable is sharp if it has the form \(M_f(s)(A) = s \cdot [f^{-1}(A)] \) for an \(\mathcal{A} \)-measurable function \(f : \Omega \to \mathbb{R} \). If \(f \) and \(g \) are \(\mathcal{A} \)-measurable functions satisfying \(f^{-1}(A) \cap g^{-1}(B) \in \mathcal{A} \) for all \(A, B \in \mathcal{B}(\mathbb{R}) \), then \(M_f \) and \(M_g \) are compatible because they have a joint observable \(M \) satisfying \(M(s)(A \times B) = s \cdot [f^{-1}(A) \cap g^{-1}(B)] \) for all \(s \in \mathcal{K}, A, B \in \mathcal{B}(\mathbb{R}) \). We do not know whether \(M_f \) and \(M_g \) compatible implies that \(f^{-1}(A) \cap g^{-1}(B) \in \mathcal{A} \) holds for every \(A, B \in \mathcal{B}(\mathbb{R}) \), although we suspect it does not.

Example 3. This is a simple example of a concrete quantum logic. Let \(\Omega = \{1, 2, 3, 4\} \) and let \(\mathcal{A} \) be the collection of subsets of \(\Omega \) with even cardinality. Then
\[
\mathcal{A} = \{\emptyset, \Omega, \{1, 2\}, \{3, 4\}, \{1, 3\}, \{2, 4\}, \{1, 4\}, \{2, 3\}\}
\]
Let K be the sets of all states on \mathcal{A}. Letting $a = \{1, 2\}$, $a' = \{3, 4\}$, $b = \{1, 3\}$, $b' = \{3, 4\}$, $c = \{1, 4\}$, $c' = \{2, 3\}$ we can represent an $s \in K$ by
\[
\hat{s} = (s(a), s(a'), s(b), s(b'), s(c), s(c')) = (s(a), 1 - s(a), s(b), 1 - s(b), s(c), 1 - s(c))
\]
Thus, every $s \in K$ has the form
\[
s = (\lambda_1, 1 - \lambda_1, \lambda_2, 1 - \lambda_2, \lambda_3, 1 - \lambda_3)
\]
for $0 \leq \lambda_i \leq 1$, $i = 1, 2, 3$. The pure (extremal) classical states are the 0-1 states: $\delta_1 = (1, 0, 1, 0, 1, 0)$, $\delta_3 = (1, 0, 0, 1, 0, 1)$, $\delta_3 = (0, 1, 1, 0, 0, 1)$, $\delta_4 = (0, 1, 0, 1, 1, 0)$. The pure nonclassical states are the 0-1 states: $\gamma_1 = 1 - \delta_1$, $\gamma_2 = 1 - \delta_2$, $\gamma_3 = 1 - \delta_3$, $\gamma_4 = 1 - \delta_4$ where $1 = (1, 1, 1, 1, 1, 1)$. For example, to see that γ_1 is not classical, we have that $\gamma_1 = (0, 1, 0, 1, 0, 1)$. Hence, $\gamma_1(\{3, 4\}) = \gamma_1(\{2, 4\}) = \gamma_1(\{2, 3\}) = 1$. If there exists a probability measure μ such that $\gamma_1 = \mu | \mathcal{A}$ we would have $\mu(\{1\}) = \mu(\{2\}) = \mu(\{3\}) = \mu(\{4\}) = 0$ which is a contradiction. The collection of sharp observable is very limited because a measurable function $f: \Omega \rightarrow \mathbb{R}$ can have at most two values. Thus, if M_f is a sharp observable there exists $a, b \in \mathbb{R}$ such that $M_f(s)(\{a, b\}) = 1$ for every $s \in K$. There are many observables with more than two values (non-binary observables) and these are not sharp. Even for this simple example, it appears to be challenging to investigate the region and interval of compatibility.

\section{Vector-Valued Measures}

Let K be a PT with generated Banach space \mathcal{V} and \mathcal{V}^* be the Banach space dual of \mathcal{V}. A \textit{normalized vector-valued measure} (NVM) for K is a map $\Gamma: \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{V}^*$ such that $A \mapsto \Gamma(A)(s) \in \mathcal{M}(\mathbb{R})$ for every $s \in K$. Thus, Γ satisfies the conditions:

1. $\Gamma(\mathbb{R})(s) = 1$ for every $s \in K$,
2. $0 \leq \Gamma(A)(s) \leq 1$ for every $s \in K$, $A \in \mathcal{B}(\mathbb{R})$,
3. If $A_i \in \mathcal{B}(\mathbb{R})$ are mutually disjoint, $i = 1, 2, \ldots$, then
\[
\Gamma(\bigcup A_i)(s) = \sum \Gamma(A_i)(s)
\]
for every $s \in K$.
This section shows that there is a close connection between observables on \mathcal{K} and NVMs for \mathcal{K}.

Theorem 4.1. If Γ is a NVM for \mathcal{K}, then $M: \mathcal{K} \to \mathcal{M}({\mathbb{R}})$ given by $M(s)(A) = \Gamma(A)(s)$, $s \in \mathcal{K}$, $A \in \mathcal{B}({\mathbb{R}})$, is an observable on \mathcal{K}.

Proof. Since $A \mapsto \Gamma(A)(s) \in \mathcal{M}({\mathbb{R}})$ we have that $A \mapsto M(s)(A) \in \mathcal{M}({\mathbb{R}})$. Let $\lambda_i \in [0, 1]$ with $\sum \lambda_i = 1$, $s_i \in \mathcal{K}$, $i = 1, 2, \ldots$, and suppose that $s = \sum \lambda_i s_i$. Then $\lim n \sum_i = 1 \lambda_i s_i = s$ in norm and since $s \mapsto \Gamma(A)(s) \in \mathcal{V}^*$, for every $A \in \mathcal{B}({\mathbb{R}})$ we have

$$M(s)(A) = M \left(\sum \lambda_i s_i \right)(A) = \Gamma(A) \left(\sum \lambda_i s_i \right) = \Gamma(A) \left(\lim n \sum_{i=1}^{n} \lambda_i s_i \right)$$

$$= \lim_{n \to \infty} \Gamma(A) \left(\sum_{i=1}^{n} \lambda_i s_i \right) = \lim_{n \to \infty} \sum_{i=1}^{n} \lambda_i \Gamma(A)(s_i)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \lambda_i M(s_i)(A) = \sum_{i=1}^{\infty} \lambda_i M(s_i)(A)$$

It follows that $M \left(\sum \lambda_i s_i \right) = \sum \lambda_i M(s_i)$ so $M \in \mathcal{O}(\mathcal{K})$. \qed

The converse of Theorem 4.1 holds if some mild conditions are satisfied. To avoid some topological and measure-theoretic technicalities, we consider the special case where \mathcal{V} is finite-dimensional. Assuming that \mathcal{K} is the base of a generating positive cone \mathcal{V}^+, we have that every element $v \in \mathcal{V}^+$ has a unique form $v = \alpha s$, $\alpha \geq 0$, $s \in \mathcal{K}$ and that $\mathcal{V} = \mathcal{V}^+ \oplus \mathcal{V}^-$ where $\mathcal{V}^- = -\mathcal{V}^+$ and $\mathcal{V}^+ \cap \mathcal{V}^- = \{0\}$. If $M \in \mathcal{O}(\mathcal{K})$, then for every $A \in \mathcal{B}({\mathbb{R}})$, $s \mapsto M(s)(A)$ is a convex, real-valued function on \mathcal{K}. A standard argument shows that this function has a unique linear extension $\widehat{M}(A) = \mathcal{V}^*$ for every $A \in \mathcal{B}({\mathbb{R}})$. Hence

$$\widehat{M}(A)(s) = M(s)(A) \quad (4.1)$$

for every $s \in \mathcal{K}$, $A \in \mathcal{B}({\mathbb{R}})$. Since $A \mapsto \widehat{M}(A)(s) = M(s)(A) \in \mathcal{M}({\mathbb{R}})$ we conclude that $A \mapsto \widehat{M}(A)$ is a NVM and \widehat{M} is the unique NVM satisfying (4.1). It follows that the converse of Theorem 4.1 holds in this case.

Example 1’. (Classical Probability Theory) In this example \mathcal{V}^* is the Banach space of bounded measurable functions $f: \Omega \to {\mathbb{R}}$ with norm $\|f\| = \ldots$
\[\sup |f(\omega)| < \infty \] and duality given by
\[\langle \mu, f \rangle = f(\mu) = \int f d\mu \]

The function \(1(\omega) = 1 \) for every \(\omega \in \Omega \) is the natural unit satisfying \(1(\mu) = 1 \) for every \(\mu \in \mathcal{K} \). In this case, \(\mathcal{K} \) is a base for the generating positive cone \(\mathcal{V}^+ \) of bounded measures and the converse of Theorem 4.1 holds. Then a NVM \(\Gamma \) has the form \(0 \leq \Gamma(A)(\omega) \leq 1 \) for every \(A \in \mathcal{B}(\mathbb{R}) \), \(\omega \in \Omega \) and \(\Gamma(\mathbb{R}) = 1 \). Thus \(\Gamma(A) \in \mathcal{F}(\Omega) \) and if \(M \) is the corresponding observable, then
\[M(\mu)(A) = \Gamma(A)(\mu) = \int \Gamma(A) d\mu \]

In particular, if \(T_p \in \mathcal{T}(\mathcal{K}) \) then the corresponding NVM \(\Gamma_p \) has the form
\[\Gamma_p(A)(\mu) = T_p(\mu)(A) = p(A) \]
so \(\Gamma_p(A) \) is the constant function \(p(A) \). Moreover, if \(M_p \in \mathcal{O}(\mathcal{K}) \) is sharp, then the corresponding NVM \(\Gamma_f \) satisfies
\[\int \Gamma_f(A) d\mu = \Gamma_f(A)(\mu) = M_f(\mu)(A) = \mu [f^{-1}(A)] = \int \chi_{f^{-1}(A)} d\mu \]
Hence, \(\Gamma_f(A) = \chi_{f^{-1}(A)} \) for every \(A \in \mathcal{B}(\mathbb{R}) \).

Example 2’. (Quantum Theory) In this example \(\mathcal{V}^* \) is the Banach space \(\mathcal{B}(H) \) of bounded linear operators on \(H \) with norm
\[\|L\| = \sup \{ \|L\psi\| : \|\psi\| = 1 \} \]
and duality given by
\[\langle s, L \rangle = L(a) = \text{tr}(sL) \]
The identity operator \(I \) is the natural unit satisfying \(I(s) = 1 \) for all \(s \in \mathcal{K} \). In this case, \(\mathcal{K} \) is a base for the generating cone \(\mathcal{V}^+ \) of positive trace class operators and the converse of Theorem 4.1 holds, If \(\Gamma \) is a NVM, then \(\Gamma(A) \) is a positive operator satisfying \(0 \leq \Gamma(A) \leq I \) called an effect and \(\Gamma(\mathbb{R}) = I \). According to the converse of Theorem 4.1, if \(M \) is an observable, then there exists a POVM \(\Gamma \) such that
\[M(s)(A) = \text{tr}[s\Gamma(A)] \]
for every $s \in \mathcal{K}$ and $A \in \mathcal{B}(\mathbb{R})$. In particular, if $T_p \in \mathcal{T}(\mathcal{K})$, then the corresponding NVM Γ_p has the form

$$\text{tr}[s \Gamma_p(A)] = \Gamma_p(A)(s) = T_p(s)(A) = p(A) = \text{tr}[sp(A)I]$$

so $\Gamma_p(A) = p(A)I$ for all $A \in \mathcal{B}(\mathbb{R})$.

Similar to a NVM, we define an n-dimensional NVM to be a map $\Gamma: \mathcal{B}(\mathbb{R}^n) \to \mathcal{V}^*$ such that $A \mapsto \Gamma(A)(s) \in \mathcal{M}(\mathbb{R}^b)$ for every $s \in \mathcal{K}$. Moreover, a set $\{\Gamma_1, \ldots, \Gamma_n\}$ of NVMs for \mathcal{K} is compatible if there exists an n-dimensional NVM Γ such that

$$\Gamma(A \times \mathbb{R} \times \cdots \times \mathbb{R}) = \Gamma_1(A)$$

$$\vdots$$

$$\Gamma(\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} \times A) = \Gamma_n(A)$$

for every $A \in \mathcal{B}(\mathbb{R})$. The proof of the following theorem is straightforward.

Theorem 4.2. If $\{M_1, \ldots, M_n\} \subseteq \mathcal{O}(\mathcal{K})$ and $\{\Gamma_1, \ldots, \Gamma_n\}$ are the corresponding NVM for \mathcal{K}, then $\{M_1, \ldots, M_n\}$ are compatible if and only if $\{\Gamma_1, \ldots, \Gamma_n\}$ are compatible.

References