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LARGE DEVIATIONS AND EXACT ASYMPTOTICS FOR CONSTRAINED

EXPONENTIAL RANDOM GRAPHS

MEI YIN

December 19, 2014

Abstract. We present a technique for approximating generic normalization constants subject
to constraints. The method is then applied to derive the exact asymptotics for the conditional
normalization constant of constrained exponential random graphs.

1. Introduction

In a recent work [2], Chatterjee and Dembo presented a general technique for computing
large deviations of nonlinear functions of independent Bernoulli random variables. In detail, let
f be a function from [0, 1]n to R, they considered a generic normalization constant of the form

F = log
∑

x∈{0,1}n

ef(x) (1.1)

and investigated conditions on f under which the approximation

F = sup
x∈[0,1]n

(f(x)− I(x)) + lower order terms (1.2)

is valid, where I(x) =
∑n

i=1 I(xi) and

I(xi) =
n
∑

i=1

(xi log xi + (1− xi) log(1− xi)). (1.3)

The sufficient condition they came up with consists of two parts. They first assumed that f is
a twice continuously differentiable function on [0, 1]n and introduced some shorthand notation.
Let ‖ · ‖ denote the supremum norm. For each i and j, let

fi =
∂f

∂xi
and fij =

∂2f

∂xi∂xj
(1.4)

and define a = ‖f‖, bi = ‖fi‖, and cij = ‖fij‖. In addition to this minor smoothness condition
on the function f , they further assumed that the gradient vector∇f(x) = (∂f/∂x1, . . . , ∂f/∂xn)
satisfies a low complexity gradient condition: For any ǫ > 0, there is a finite subset of Rn denoted
by D(ǫ) such that for all x ∈ [0, 1]n, there exists d = (d1, . . . , dn) ∈ D(ǫ) with

n
∑

i=1

(fi(x)− di)
2 ≤ nǫ2. (1.5)
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Theorem 1.1 (Theorem 1.5 in [2]). Let F , a, bi, cij , and D(ǫ) be defined as above. Let I be
defined as in (1.3). Then for any ǫ > 0, F satisfies the upper bound

F ≤ sup
x∈[0,1]n

(f(x)− I(x)) + complexity term + smoothness term, (1.6)

where

complexity term =
1

4

(

n
n
∑

i=1

b2i

)1/2

ǫ+ 3nǫ+ log |D(ǫ)|, and (1.7)

smoothness term = 4





n
∑

i=1

(acii + b2i ) +
1

4

n
∑

i,j=1

(ac2ij + bibjcij + 4bicij)





1/2

(1.8)

+
1

4

(

n
∑

i=1

b2i

)1/2( n
∑

i=1

c2ii

)1/2

+ 3
n
∑

i=1

cii + log 2.

Moreover, F satisfies the lower bound

F ≥ sup
x∈[0,1]n

(f(x)− I(x))− 1

2

n
∑

i=1

cii. (1.9)

Chatterjee and Dembo [2] then applied this general result in several different settings and
in particular to derive the exact asymptotics for the normalization constant of exponential
random graphs. Let s be a positive integer. We recall the definition of an s-parameter family
of exponential random graphs. Let H1, . . . ,Hs be fixed finite simple graphs (“simple” means
undirected, with no loops or multiple edges). By convention, we take H1 to be a single edge.
Let ζ1, . . . , ζs be s real parameters and let N be a positive integer. Consider the set GN of all
simple graphsGN onN vertices. Let hom(Hi, GN ) denote the number of homomorphisms (edge-
preserving vertex maps) from the vertex set V (Hi) into the vertex set V (GN ) and t(Hi, GN )
denote the homomorphism density of Hi in GN ,

t(Hi, GN ) =
|hom(Hi, GN )|
|V (GN )||V (Hi)|

. (1.10)

By an s-parameter family of exponential random graphs we mean a family of probability mea-

sures Pζ
N on GN defined by, for GN ∈ GN ,

P
ζ
N (GN ) = exp

(

N2
(

ζ1t(H1, GN ) + · · ·+ ζst(Hs, GN )− ψζ
N

))

, (1.11)

where ψζ
N is the normalization constant,

ψζ
N =

1

N2
log

∑

GN∈GN

exp
(

N2 (ζ1t(H1, GN ) + · · ·+ ζst(Hs, GN ))
)

. (1.12)

These exponential models are widely used to characterize the structure and behavior of real-
world networks as they are able to predict the global structure of the networked system based
on a set of tractable local features. For practitioners, one of the key objectives while studying

this model is to evaluate the normalization constant ψζ
N of the probability measure P

ζ
N , since

averages of various quantities of interest may be obtained by differentiating ψζ
N with respect to

appropriate parameters. Computation of ψζ
N is also important in statistics because it is crucial
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for carrying out maximum likelihood estimates and Bayesian inference of unknown parameters.
Based on a large deviation principle for Erdős-Rényi graphs established in Chatterjee and

Varadhan [4], Chatterjee and Diaconis [3] developed an asymptotic approximation for ψζ
N and

connected the occurrence of a phase transition in the exponential model with the non-analyticity

of ψζ
N . Further investigations quickly followed, see for example [1, 6, 7, 8, 9, 10, 11]. However,

since the approximation relies on Szemerédi’s lemma, the error bound on ψζ
N is of the order of

some negative power of log∗N and this method is also not applicable for sparse exponential
random graphs.

To improve on the approximation, Chatterjee and Dembo [2] utilized Theorem 1.1. They
introduced an equivalent definition of the homomorphism density so that the normalization
constant for exponential random graphs (1.12) takes the same form as the generic normalization
constant (1.1). This new notion of the homomorphism density is denoted by t(H,x) and is
constructed in the following way. Let k be a positive integer and let H be a finite simple graph
on the vertex set [k] = {1, . . . , k}. Let E be the set of edges of H and let m = |E|. Let N

be another positive integer and let n =
(

N
2

)

. Index the elements of [0, 1]n as x = (xij)1≤i<j≤N

with the understanding that if i < j, then xji is the same as xij , and for all i, xii = 0. Let
t(H,x) = T (x)/N2, where T : [0, 1]n → R is defined as

T (x) =
1

Nk−2

∑

q∈[N ]k

∏

{l,l′}∈E

xqlql′ . (1.13)

For any graph GN , if xij = 1 means there is an edge between the vertices i and j and xij =
0 means there is no edge, then t(H,x) = t(H,GN ), where t(H,GN ) is the homomorphism
density defined by (1.10). Furthermore, if we let Gx denote the simple graph whose edges are
independent, and edge (i, j) is present with probability xij and absent with probability 1−xij,
then this newly defined homomorphism density t(H,x) gives the expected value of t(H,Gx).
Chatterjee and Dembo checked that T (x) satisfies both the smoothness condition and the low
complexity gradient condition as assumed in Theorem 1.1. In detail, they showed in Lemmas
5.1 and 5.2 of [2] that

‖T‖ ≤ N2, ‖ ∂T
∂xij

‖ ≤ 2m, (1.14)

∥

∥

∥

∥

∂2T

∂xij∂xi′j′

∥

∥

∥

∥

≤
{

4m(m− 1)N−1, if |{i, j, i′, j′}| = 2 or 3;
4m(m− 1)N−2, if |{i, j, i′, j′}| = 4,

(1.15)

and for any ǫ > 0,

|DT (ǫ)| ≤ exp

(

cm4k4N

ǫ4
log

Cm4k4

ǫ4

)

, (1.16)

where c and C are universal constants. By taking f(x) = ζ1T1(x) + · · · + ζsTs(x) in Theorem

1.1, they then gave a concrete error bound for the normalization constant ψζ
N , which is seen

to be F/N2 in this alternative interpretation of (1.1) . This error bound is significantly better
than the negative power of log∗N and allows a small degree of sparsity for ζi.

Theorem 1.2 (Theorem 1.6 in [2]). Let s be a positive integer and H1, . . . ,Hs be fixed finite

simple graphs. Let N be another positive integer and let n =
(N
2

)

. Define T1, . . . , Ts accordingly

as in the above paragraph. Let ζ1, . . . , ζs be s real parameters and define ψζ
N as in (1.12). Let
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f(x) = ζ1T1(x) + · · · + ζsTs(x), B = 1 + |ζ1|+ · · ·+ |ζs|, and I be defined as in (1.3). Then

− cBN−1 ≤ ψζ
N − sup

x∈[0,1]n

f(x)− I(x)

N2
(1.17)

≤ CB8/5N−1/5(logN)1/5
(

1 +
logB

logN

)

+CB2N−1/2,

where c and C are constants that may depend only on H1, . . . ,Hs.

The unconstrained exponential family of random graphs (1.11) introduced above assumes
no prior knowledge of the graph before sampling, but in many situations partial information
of the graph is already known beforehand. To tackle this issue, we studied the constrained
exponential random graph model in [5]. For clarity, we assume that the edge density of the graph
is approximately known to be e, though the argument runs through without much modification

for more general constraints. Take t > 0. The conditional normalization constant ψe,ζ
N,t is

defined analogously to the normalization constant for the unconstrained exponential random
graph model,

ψe,ζ
N,t =

1

N2
log

∑

GN∈GN :|e(GN )−e|≤t

exp
(

N2 (ζ1t(H1, GN ) + · · ·+ ζst(Hs, GN ))
)

, (1.18)

the difference being that we are only taking into account graphs GN whose edge density e(GN )
is within a t neighborhood of e. Correspondingly, the associated conditional probability measure

P
e,ζ
N,t(GN ) is given by

P
e,ζ
N,t(GN ) = exp

(

N2
(

ζ1t(H1, GN ) + · · · + ζst(Hs, GN )− ψe,ζ
N,t

))

1|e(GN )−e|≤t. (1.19)

Using the large deviation principle established in Chatterjee and Varadhan [4] and Chatterjee

and Diaconis [3], we developed an asymptotic approximation for ψe,ζ
N,t [5]. Nevertheless, this

approximation suffers from the same problem: the error bound on ψe,ζ
N,t is of the order of some

negative power of log∗N and is not applicable in the sparse setting.

As shown in [5], just like the unconstrained normalization constant ψζ
N , the conditional

normalization constant ψe,ζ
N,t encodes essential information about the constrained exponential

model (1.19) and helps to predict the structure and behavior of a typical random graph drawn
from this model. Seeing the power of nonlinear large deviations in deriving a concrete error

bound for ψζ
N , we naturally wonder if it is possible to likewise obtain a better estimate for ψe,ζ

N,t.
The following sections will be dedicated towards this goal. Due to the imposed constraint,
instead of working with a generic normalization constant of the form (1.1) as in Chatterjee
and Dembo [2], we will work with a generic conditional normalization constant in Theorem 2.1
and then apply this result to derive a concrete error bound for the conditional normalization
constant of constrained exponential random graphs in Theorems 3.1 and 3.2.

2. Nonlinear large deviations

Let f and h be two continuously differentiable functions from [0, 1]n to R. Assume that f and
h satisfy both the smoothness condition and the low complexity gradient condition described
at the beginning of this paper. Let a, bi, cij be the supremum norms of f and let α, βi, γij be
the corresponding supremum norms of h. For any ǫ > 0, let Df (ǫ) and Dh(ǫ) be finite subsets
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of Rn associated with the gradient vectors of f and h respectively. Take t > 0. Consider a
generic conditional normalization constant of the form

F c = log
∑

x∈{0,1}n:|h(x)|≤tn

ef(x). (2.1)

Theorem 2.1. Let F c, a, bi, cij , α, βi, γij, Df (ǫ), and Dh(ǫ) be defined as above. Let I be
defined as in (1.3). Let K = log 2+2a/n. Then for any δ > 0 and ǫ > 0, F c satisfies the upper
bound

F c ≤ sup
x∈[0,1]n:|h(x)|≤(t+δ)n

(f(x)− I(x)) + complexity term + smoothness term, (2.2)

where

complexity term =
1

4

(

n
n
∑

i=1

m2
i

)1/2

ǫ+ 3nǫ+ log

(

12K
(

1
n

∑n
i=1 β

2
i

)1/2

δǫ

)

(2.3)

+ log |Df (ǫ/3)|+ log |Dh((δǫ)/(6K))|, and

smoothness term = 4





n
∑

i=1

(lnii +m2
i ) +

1

4

n
∑

i,j=1

(ln2ij +mimjnij + 4minij)





1/2

(2.4)

+
1

4

(

n
∑

i=1

m2
i

)1/2( n
∑

i=1

n2ii

)1/2

+ 3
n
∑

i=1

nii + log 2,

where

l = a+ nK, (2.5)

mi = bi +
2Kβi
δ

, (2.6)

nij = cij +
2Kγij
δ

+
6Kβiβj
nδ2

. (2.7)

Moreover, F c satisfies the lower bound

F c ≥ sup
x∈[0,1]n:|h(x)|≤(t−δ0)n

(f(x)− I(x))− ǫ0n− η0n− log 2, (2.8)

where

δ0 =

√
6

n

(

n
∑

i=1

(αγii + β2i )

)1/2

, (2.9)

ǫ0 = 2

√

6

n
, (2.10)

η0 =

√
6

n

(

n
∑

i=1

(acii + b2i )

)1/2

. (2.11)
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Proof of the upper bound. Let g : R → R be a function that is twice continuously differentiable,
non-decreasing, and satisfies g(x) = −1 if x ≤ −1 and g(x) = 0 if x ≥ 0. Let L1 = ‖g′‖ and
L2 = ‖g′′‖. Chatterjee and Dembo [2] described one such g:

g(x) = 10(x + 1)3 − 15(x+ 1)4 + 6(x+ 1)5 − 1, (2.12)

which gives L1 ≤ 2 and L2 ≤ 6. Define

ψ(x) = Kg((t − |x|)/δ). (2.13)

Then clearly ψ(x) = −K if |x| ≥ t + δ, ψ(x) = 0 if |x| ≤ t, and ψ(x) is non-decreasing for
−(t+ δ) ≤ x ≤ −t and non-increasing for t ≤ x ≤ t+ δ. We also have

‖ψ‖ ≤ K, ‖ψ′‖ ≤ 2K

δ
, ‖ψ′′‖ ≤ 6K

δ2
. (2.14)

Let e(x) = nψ(h(x)/n). The plan is to apply Theorem 1.1 to the function f + e instead of
f only. Note that

∑

x∈{0,1}n:|h(x)|≤tn

ef(x) ≤
∑

x∈{0,1}n

ef(x)+e(x). (2.15)

We estimate f(x) + e(x) − I(x) over [0, 1]n. There are three cases.

• If |h(x)| ≤ tn, then

f(x) + e(x)− I(x) = f(x)− I(x) ≤ sup
x∈[0,1]n:|h(x)|≤(t+δ)n

(f(x)− I(x)). (2.16)

• If |h(x)| ≥ (t+ δ)n, then

f(x)+e(x)−I(x) = f(x)−nK−I(x) ≤ a+n log 2−nK ≤ −a ≤ sup
x∈[0,1]n:|h(x)|≤(t+δ)n

(f(x)−I(x)).

(2.17)
• If |h(x)| = (t+ δ′)n for some 0 < δ′ < δ, then

f(x) + e(x)− I(x) ≤ f(x)− I(x) ≤ sup
x∈[0,1]n:|h(x)|≤(t+δ)n

(f(x)− I(x)). (2.18)

This shows that

sup
x∈[0,1]n

(f(x) + e(x) − I(x)) ≤ sup
x∈[0,1]n:|h(x)|≤(t+δ)n

(f(x)− I(x)). (2.19)

We check the smoothness condition for f + e first. Note that

‖f + e‖ ≤ a+ nK = l, (2.20)

and for any i,
∥

∥

∥

∥

∂(f + e)

∂xi

∥

∥

∥

∥

≤ bi +
2Kβi
δ

= mi, (2.21)

and for any i, j,
∥

∥

∥

∥

∂2(f + e)

∂xi∂xj

∥

∥

∥

∥

≤ cij +
2Kγij
δ

+
6Kβiβj
nδ2

= nij. (2.22)

Next we check the low complexity gradient condition for f + e. Let

ǫ′ =
ǫ

3‖ψ′‖ and τ =
ǫ

3
(

1
n

∑n
i=1 β

2
i

)1/2
. (2.23)
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Define

D(ǫ) = {df + θdh : df ∈ Df (ǫ/3), d
h ∈ Dh(ǫ

′),

and θ = jτ for some integer − ‖ψ′‖/τ < j < ‖ψ′‖/τ}. (2.24)

Note that

|D(ǫ)| ≤ 2‖ψ′‖
τ

|Df (ǫ/3)||Dh(ǫ
′)|. (2.25)

Let ei = ∂e/∂xi. Take any x ∈ [0, 1]n and choose df ∈ Df (ǫ/3) and dh ∈ Dh(ǫ
′). Choose an

integer j between −‖ψ′‖/τ and ‖ψ′‖/τ such that |ψ′(h(x)/n) − jτ | ≤ τ . Let d = df + jτdh so
that d ∈ D(ǫ). Then

n
∑

i=1

(fi(x) + ei(x)− di)
2 =

n
∑

i=1

(

(fi(x)− dfi ) + (ψ′(h(x)/n)hi(x)− jτdhi )
)2

(2.26)

≤ 3

n
∑

i=1

(fi(x)− dfi )
2 + 3(ψ′(h(x)/n) − jτ)2

n
∑

i=1

hi(x)
2 + 3‖ψ′‖2

n
∑

i=1

(hi(x)− dhi )
2

≤ 1

3
nǫ2 + 3τ2

n
∑

i=1

β2i + 3‖ψ′‖2nǫ′2 = nǫ2.

Thus D(ǫ) is a finite subset of Rn associated with the gradient vector of f + e. The proof is
completed by applying Theorem 1.1. �

Proof of the lower bound. Fix any y ∈ [0, 1]n such that |h(y)| ≤ (t− δ0)n. Let Y = (Y1, . . . , Yn)
be a random vector with independent components, where each Yi is a Bernoulli(yi) random

variable. Let Y (i) be the random vector (Y1, . . . , Yi−1, 0, Yi+1, . . . , Yn). Let

A1 = {x ∈ {0, 1}n : |h(x)| ≤ tn}, (2.27)

A2 = {x ∈ {0, 1}n : |g(x, y) − I(y)| ≤ ǫ0n}, (2.28)

A3 = {x ∈ {0, 1}n : |f(x)− f(y)| ≤ η0n}. (2.29)

Let A = A1 ∩A2 ∩A3. Then
∑

x∈{0,1}n:|h(x)|≤tn

ef(x) =
∑

x∈A1

ef(x)−g(x,y)+g(x,y) (2.30)

≥
∑

x∈A

ef(x)−g(x,y)+g(x,y)

≥ ef(y)−I(y)−(ǫ0+η0)nP(Y ∈ A).

We first consider P(Y ∈ A1). Let U = h(Y ) − h(y). For t ∈ [0, 1] and x ∈ [0, 1]n define
ui(t, x) = hi(tx+ (1− t)y). Note that

U =

∫ 1

0

n
∑

i=1

(Yi − yi)ui(t, Y )dt, (2.31)

which implies

E(U2) =

∫ 1

0

n
∑

i=1

E((Yi − yi)ui(t, Y )U)dt. (2.32)
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Let Ui = h(Y (i))− h(y) so that Y (i) and Ui are functions of random variables (Yj)j 6=i only. By

the independence of Yi and (Y (i), Ui), we have

E((Yi − yi)ui(t, Y
(i))Ui) = 0. (2.33)

Therefore

|E((Yi − yi)ui(t, Y )U)| ≤ E|((ui(t, Y )− ui(t, Y
(i)))U |+ E|ui(t, Y (i))(U − Ui)| (2.34)

≤
∥

∥

∥

∥

∂ui
∂xi

∥

∥

∥

∥

‖U‖+ ‖ui‖ ‖U − Ui‖

≤ 2αtγii + β2i .

This gives

P(Y ∈ Ac
1) ≤ P(|U | ≥ δ0n) ≤

E(U2)

δ20n
2

≤
∑n

i=1(αγii + β2i )

δ20n
2

=
1

6
. (2.35)

Next we consider P(Y ∈ A2). Note that

E(g(Y, y)) = I(y) (2.36)

and

Var(g(Y, y)) =

n
∑

i=1

Var(Yi log yi + (1− Yi) log(1− yi)) (2.37)

=

n
∑

i=1

yi(1− yi)

(

log
yi

1− yi

)2

.

For x ∈ [0, 1], since |√x log x| ≤ 1, we have

x(1− x)

(

log
x

1− x

)2

≤
(

|
√
x log x|+ |

√
1− x log(1− x)|

)2 ≤ 4. (2.38)

Therefore

P(Y ∈ Ac
2) ≤ P(|g(Y, y) − I(y)| ≥ ǫ0n) ≤

Var(g(Y, y))

ǫ20n
2

≤ 4

ǫ20n
=

1

6
. (2.39)

Finally we consider P(Y ∈ A3). Let V = f(Y ) − f(y). For t ∈ [0, 1] and x ∈ [0, 1]n define
vi(t, x) = fi(tx+ (1− t)y). Note that

V =

∫ 1

0

n
∑

i=1

(Yi − yi)vi(t, Y )dt, (2.40)

which implies

E(V 2) =

∫ 1

0

n
∑

i=1

E((Yi − yi)vi(t, Y )V )dt. (2.41)

Let Vi = f(Y (i))− f(y) so that Y (i) and Vi are functions of random variables (Yj)j 6=i only. By

the independence of Yi and (Y (i), Vi), we have

E((Yi − yi)vi(t, Y
(i))Vi) = 0. (2.42)
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Therefore

|E((Yi − yi)vi(t, Y )V )| ≤ E|((vi(t, Y )− vi(t, Y
(i)))V |+ E|vi(t, Y (i))(V − Vi)| (2.43)

≤
∥

∥

∥

∥

∂vi
∂xi

∥

∥

∥

∥

‖V ‖+ ‖vi‖ ‖V − Vi‖

≤ 2atcii + b2i .

This gives

P(Y ∈ Ac
3) ≤ P(|V | ≥ η0n) ≤

E(V 2)

η20n
2

≤
∑n

i=1(acii + b2i )

η20n
2

=
1

6
. (2.44)

Combining (2.35), (2.39) and (2.44), we have

P(Y ∈ A) ≥ 1− P(Y ∈ Ac
1)− P(Y ∈ Ac

2)− P(Y ∈ Ac
3) ≥

1

2
. (2.45)

Plugging this into (2.30) and taking supremum over y completes the proof. �

3. Application to exponential random graphs

As mentioned earlier, we would like to apply Theorem 2.1 to derive the exact asymptotics
for the conditional normalization constant of constrained exponential random graphs. Recall
the definition of an s-parameter family of conditional exponential random graphs introduced
earlier, where we assume that the “ideal” edge density of the graph is e. Let

f(x) = ζ1T1(x) + · · · + ζsTs(x) and h(x) = T1(x)−N2e, (3.1)

where Ti(x)/N
2 is the equivalent notion of homomorphism density as defined in (1.13). Let

n =
(N
2

)

. We compare the conditional normalization constant ψe,ζ
N,t (1.18) for constrained

exponential random graphs with the generic conditional normalization constant F c (2.1). Note
that the constraint |e(GN ) − e| ≤ t may be translated into |T1(x) − N2e| ≤ N2t, and if we
further redefine t to be (1− 1/N)t′/2 then we arrive at the generic constraint |h(x)| ≤ t′n as in

(2.1). Thus ψe,ζ
N,t = F c/N2. In the following we give a concrete error bound for ψe,ζ

N,t using the
estimates in Theorem 2.1.

Theorem 3.1. Let s be a positive integer and H1, . . . ,Hs be fixed finite simple graphs. Let N
be another positive integer and let n =

(

N
2

)

. Define T1, . . . , Ts accordingly as in the paragraph

before Theorem 1.2. Let ζ1, . . . , ζs be s real parameters and define ψe,ζ
N,t as in (1.18). Let

f(x) = ζ1T1(x) + · · · + ζsTs(x), B = 1 + |ζ1| + · · · + |ζs|, and I be defined as in (1.3). Take
κ > 8. Then

sup
x∈[0,1]n:|h(x)|≤(t′−cn−1/(2κ))n

f(x)− I(x)

N2
− CBN−1/2 ≤ ψe,ζ

N,t (3.2)

≤ sup
x∈[0,1]n:|h(x)|≤(t′+cn−1/(2κ))n

f(x)− I(x)

N2
+ CB8/5N (8−κ)/(5κ)(logN)1/5

(

1 +
logB

logN

)

+CB2N (2−κ)/(2κ),

where t′ = 2Nt/(N − 1) and c and C are constants that may depend only on H1, . . . ,Hs and e.

Proof. Chatterjee and Dembo [2] checked that Ti(x) satisfies both the smoothness condition
and the low complexity gradient condition stated at the beginning of this paper, which readily
implies that f and h satisfy the assumptions of Theorem 2.1. Recall that the indexing set for
quantities like bi and γij , instead of being {1, . . . , n}, is now {(i, j) : 1 ≤ i < j ≤ N}, and for
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simplicity we write (ij) instead of (i, j). Let a, b(ij), c(ij)(i′j′) be the supremum norms of f and
let α, β(ij), γ(ij)(i′j′) be the corresponding supremum norms of h. For any ǫ > 0, let Df (ǫ) and
Dh(ǫ) be finite subsets of Rn associated with the gradient vectors of f and h respectively.

Based on the bounds for Ti (1.14) (1.15) (1.16), we derive the bounds for f and h.

a ≤ CBN2, b(ij) ≤ CB, (3.3)

c(ij)(i′j′) ≤
{

CBN−1, if |{i, j, i′, j′}| = 2 or 3;
CBN−2, if |{i, j, i′, j′}| = 4,

(3.4)

|Df (ǫ)| ≤
s
∏

i=1

|Di(ǫ/(ζis))| ≤ exp

(

CB4N

ǫ4
log

CB

ǫ

)

. (3.5)

α ≤ CN2, β(ij) ≤ C, (3.6)

γ(ij)(i′j′) ≤
{

CN−1, if |{i, j, i′, j′}| = 2 or 3;
CN−2, if |{i, j, i′, j′}| = 4,

(3.7)

|Dh(ǫ)| = |D1(ǫ)| ≤ exp

(

CN

ǫ4
log

C

ǫ

)

. (3.8)

We then estimate the lower and upper error bounds for ψe,ζ
N,t using the bounds on f and h

obtained above. First the lower bound:
∑

(ij)

ac(ij)(ij) ≤ CB2N3,
∑

(ij)

b2(ij) ≤ CB2N2. (3.9)

∑

(ij)

αγ(ij)(ij) ≤ CN3,
∑

(ij)

β2(ij) ≤ CN2. (3.10)

Therefore

δ0 ≤ cn−1/4 ≤ cn−1/(2κ), (3.11)

ǫ0n+ η0n+ log 2

N2
≤ CN−1 + CBN−1/2 + CN−2 ≤ CBN−1/2. (3.12)

This gives

ψe,ζ
N,t ≥ sup

x∈[0,1]n:|h(x)|≤(t′−cn−1/(2κ))n

f(x)− I(x)

N2
− CBN−1/2, (3.13)

Next the more involved upper bound: Assume that n−1/4 ≤ δ ≤ 1 and 0 < ǫ ≤ 1. Since
K ≤ CB, this implies that

l ≤ CBN2, m(ij) ≤ CBδ−1, (3.14)

n(ij)(i′j′) ≤
{

CBN−1δ−1, if |{i, j, i′, j′}| = 2 or 3;
CBN−2δ−2, if |{i, j, i′, j′}| = 4.

(3.15)

The following estimates are direct consequences of the bounds on l, m(ij), and n(ij)(i′j′).
∑

(ij)

ln(ij)(ij) ≤ CB2N3δ−1,
∑

(ij)

m2
(ij) ≤ CB2N2δ−2, (3.16)

∑

(ij)(i′j′)

ln2(ij)(i′j′) ≤ CB3N3δ−2, (3.17)

∑

(ij)(i′j′)

m(ij)(mi′j′ + 4)n(ij)(i′j′) ≤ CB3N2δ−4, (3.18)
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∑

(ij)

n2(ij)(ij) ≤ CB2δ−2,
∑

(ij)

n(ij)(ij) ≤ CBNδ−1. (3.19)

Therefore

complexity term ≤ CBN2δ−1ǫ+ CN2ǫ+ log
CB

δǫ
+
CB4N

ǫ4
log

CB

ǫ
+
CB4N

δ4ǫ4
log

CB

δǫ
(3.20)

≤ CBN2δ−1ǫ+
CB4N

δ4ǫ4
log

CB

δǫ
.

smoothness term ≤ CB3/2N3/2δ−1 + CB2Nδ−2 + CBNδ−1 +C ≤ CB2N3/2δ−1. (3.21)

Taking ǫ = (B3 logN)/(δ3N)1/5, this gives

ψe,ζ
N,t ≤ sup

x∈[0,1]n:|h(x)|≤(t′+δ)n

f(x)− I(x)

N2
+ CB8/5N−1/5(logN)1/5δ−8/5

(

1 +
logB

logN

)

(3.22)

+CB2N−1/2δ−1.

For n large enough, we may choose δ = cn−1/(2κ) as in (3.11), which yields a further simplifica-
tion

ψe,ζ
N,t ≤ sup

x∈[0,1]n:|h(x)|≤(t′+cn−1/(2κ))n

f(x)− I(x)

N2
+ CB8/5N (8−κ)/(5κ)(logN)1/5

(

1 +
logB

logN

)

(3.23)

+CB2N (2−κ)/(2κ).

�

We can do a more refined analysis of Theorem 3.1 when ζi’s are non-negative for i ≥ 2.

Theorem 3.2. Let s be a positive integer and H1, . . . ,Hs be fixed finite simple graphs. Let N
be another positive integer and let n =

(

N
2

)

. Let ζ1, . . . , ζs be s real parameters and suppose

ζi ≥ 0 for i ≥ 2. Define ψe,ζ
N,t as in (1.18). Let B = 1 + |ζ1| + · · · + |ζs| and I be defined as in

(1.3). Take κ > 8. Then

− cBN−1/κ ≤ ψe,ζ
N,t − sup

|x−e|≤t

{

ζ1x+ · · ·+ ζkx
e(Hk) − 1

2
I(x)

}

(3.24)

≤ CB8/5N (8−κ)/(5κ)(logN)1/5
(

1 +
logB

logN

)

+CB2N−1/κ,

where e(Hi) denotes the number of edges in Hi and c and C are constants that may depend
only on H1, . . . ,Hs, e, and t.

Remark. If Hi, i ≥ 2 are all stars, then the conclusions of Theorem 3.2 hold for any ζ1, . . . , ζs.

Remark. As an example, consider the case where s = 2, H1 is a single edge and H2 is a tri-

angle. Theorem 3.2 shows that the difference between ψe,ζ
N,t and sup|x−e|≤t

{

ζ1x+ ζ2x
3 − 1

2I(x)
}

tends to zero as long as |ζ1|+ |ζ2| grows slower than N (κ−8)/(8κ)(logN)−1/8, thereby allowing a
small degree of sparsity for ζi. When ζi’s are fixed, it provides an approximation error bound
of order N (8−κ)/(5κ)(logN)1/5, substantially better than the negative power of log∗N given by
Szemerédi’s lemma.
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Proof. Fix t > 0. We find upper and lower bounds for

LN = sup
x∈[0,1]n:|h(x)|≤(t′+cn−1/(2κ))n

f(x)− I(x)

N2
(3.25)

and

MN = sup
x∈[0,1]n:|h(x)|≤(t′−cn−1/(2κ))n

f(x)− I(x)

N2
(3.26)

in Theorem 3.1 when N is large.
On one hand, by considering g(x, y) = xij for any ( i−1

N , i
N ]× ( j−1

N , j
N ] and i 6= j, we have

LN ≤ sup
g:[0,1]2→[0,1],g(x,y)=g(y,x)

|e(g)−e|≤t+ c
2
n−1/(2κ)

{

ζ1t(H1, g) + · · · + ζkt(Hk, g) −
1

2

∫∫

[0,1]2
I(g(x, y))dxdy

}

,

(3.27)

MN ≤ sup
g:[0,1]2→[0,1],g(x,y)=g(y,x)

|e(g)−e|≤t

{

ζ1t(H1, g) + · · ·+ ζkt(Hk, g)−
1

2

∫∫

[0,1]2
I(g(x, y))dxdy

}

.

(3.28)
It was proved in Chatterjee and Diaconis [3] that when ζi’s are non-negative for i ≥ 2, the
above supremum may only be attained at constant functions on [0, 1]. Therefore

LN ≤ sup
|x−e|≤t+ c

2
n−1/(2κ)

{

ζ1x+ · · · + ζkx
e(Hk) − 1

2
I(x)

}

, (3.29)

MN ≤ sup
|x−e|≤t

{

ζ1x+ · · ·+ ζkx
e(Hk) − 1

2
I(x)

}

. (3.30)

On the other hand, by considering g′(x, y) = xij ≡ x for any i 6= j, we have

LN ≥ sup
|N−1

N
x−e|≤t

{

ζ1x+ · · ·+ ζkx
e(Hk) − 1

2
I(x)

}

+O(
1

N
), (3.31)

MN ≥ sup
|N−1

N
x−e|≤t− c

2
n−1/(2κ)

{

ζ1x+ · · ·+ ζkx
e(Hk) − 1

2
I(x)

}

+O(
1

N
). (3.32)

The O(1/N) factor comes from the following consideration. The difference between I(g′) and
I(x) is easy to estimate, while the difference between t(Hi, g

′) and t(Hi, x) = xe(Hi) is caused
by the zero diagonal terms xii. We do a broad estimate of (1.13) and find that it is bounded
by ci/N , where ci is a constant that only depends on Hi. Putting everything together,

LN =MN = sup
|x−e|≤t

{

ζ1x+ · · ·+ ζkx
e(Hk) − 1

2
I(x)

}

+O(
1

N1/κ
). (3.33)

The rest of the proof follows. �
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