Graduate Curriculum and Guidelines

Department of Physics and Astronomy, University of Denver
Last revision: October 18, 2011

This document serves as a guideline for graduate (M.S. and Ph.D.) students in the Physics and Astronomy department at DU. It describes the basic structure of the graduate curriculum, including examinations, coursework, and other degree requirements. It is not meant to be exhaustive, as there is no exact path in one’s graduate career: many factors contribute to a student’s success. The faculty intend that each student will be continuously mentored throughout his or her graduate career so that his or her achievements can be recognized and any potential difficulties foreseen and avoided. If you have any questions about this document, please discuss them with your adviser or any other faculty member.
Diagnostic Examination

Diagnostic Examination is a scholastic aptitude placement test only to assess students’ scholarly readiness upon joining the program and will not enter into their grades. All incoming students are required to take this examination before their first Autumn quarter registration, regardless of their prior undergraduate and graduate (if transferring) work. Because the results of this examination will shape the first few years of their graduate career, students are advised to take this examination seriously.

Content:
The examination consists of 5 sections (Mechanics, E&M, Modern Physics, Thermal Physics & Optics, and Mathematical Methods). Problems in this examination are based on material in the corresponding undergraduate level courses that are taught at DU.

Administered:
The examination is administered on approximately the first day of business in September by the Graduate Committee.

Possible Outcome:
None. This examination is solely for informational purposes and will not enter into students’ grades. The Graduate Committee will inform the outcome of the examination to students immediately after the examination and the Graduate advisor will discuss options with students individually in order to design academic plans during their first few years in the program.

Special Cases:
The graduate committee may recommend students who performed exceptionally well on Diagnostic Examination to take Comprehensive Examination immediately after joining the Graduate Program for a possible waiver from the Core Course requirements (also see Special Cases under Comprehensive Exam).
Graduate Core Courses

Physics & Astronomy Graduate Core Courses are the following 12 courses (27 qtr hrs) that all students are expected to take during the first year in the program:

- **PHYS 4511**
 Advanced Dynamics
 4 qtr hrs
- **PHYS 4611, 4612**
 Advanced Electricity and Magnetism I, II
 3 qtr hrs for 2 qtrs
- **PHYS 4111, 4112**
 Quantum Mechanics I, II
 3 qtr hrs for 2 qtrs
- **PHYS 4811**
 Statistical Mechanics
 4 qtr hrs
- **PHYS 4001**
 Introduction to Research I
 2 qtr hrs (nominally)
 Students will review essential material in mathematical physics and learn basic research skills, including literature search, programming and scientific writing. Towards the end of the quarter students select a faculty member with whom to take on a Winter Research Project to be conducted during the Winter Interterm and Winter quarter. A research proposal for the Winter Research Project has to be prepared by students.
- **PHYS 4002**
 Introduction to Research II
 1 - 3 qtr hrs
 Students continue their research training with a faculty member of their choosing.
- **PHYS 4003**
 Introduction to Research III
 2 qtr hrs (nominally)
 Students will develop scientific communication skills further by presenting results of the Winter Research Project at the Departmental Colloquia and writing a term paper.

Core Course Sequence

Graduate Core Courses are offered every other year. A typical sequence in a year is shown below. A full course load is either 8 or 9 quarter hours. The balance of quarter hours beyond the Core Course Sequence can be filled with Independent Research/Study or special topics courses.

<table>
<thead>
<tr>
<th>Autumn</th>
<th>Winter Interterm</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
</table>
| Adv. Dynamics (4 qtr hrs) or
Quantum Mech I (3 qtr hrs) | | E&M 1 (3 qtr hrs)
or
Quantum Mech II (3 qtr hrs) | E&M 2 (3 qtr hrs)
or
Statistical Mech. (4 qtr hrs) |
| Intro Research 1 (2 qtr hr) | Winter Research | Intro Research 2 (2 qtr hrs) | Intro Research 3 (2 qtr hr) |

Graduate Courses beyond the Core

Each student and his or her advisor (and/or his or her Master's/Dissertation Committee, once formed) have the responsibility of establishing a course of study for the advanced degree sought. The particular series of courses will vary depending on desired goals. However, normally the core courses may be followed by introductory courses to specialized topics (e.g. Astrophysics/Biophysics/Condensed Matter sequences) and independent study/research to further one’s specialization and to complete a Master’s Thesis or PhD Dissertation.
Comprehensive Examination

The Comprehensive Examination is given to assess whether students have attained the standards set by the Department to continue their pursuit of the degrees sought. All students are required to pass the Comprehensive Examination at an appropriate level (M.S. or Ph.D.) in order to advance their candidacy status, as described in the University Policies and Procedures. It is to be taken during the Winter Quarter of the second year. It consists of a single topic approved by the Comprehensive Exam Committee and has two components, one Written and one Oral.

Topic Proposal

The topic for the Exam is proposed by the student and must be approved by the Comprehensive Exam Committee. The topic is to be clearly distinct from that of the primary research of the student. The Topic Proposal consists of a one paragraph overview of the topic that briefly describes its importance to Physics and Astronomy and the elements of core graduate-level topics that it entails. The deadline for submission of the Topic Proposal is October 15. Upon review by the Graduate Committee, revisions to the Proposal may be requested with a final due date of November 15.

Assignment of a Comprehensive Exam Committee

Each student is assigned a Comprehensive Exam Committee consisting of a minimum of three tenure-line faculty members of the Physics and Astronomy Department. The members of the committee will be decided by the faculty Graduate Committee and will be finalized by November 15.

Written Component

For the Written component, the student prepares a summary paper of 1500–2000 words in length, due by January 15. The paper should describe in detail the key elements of core graduate-level topics within the topic and how they are manifested and integrated into the particular field of study. A style sheet from a common scientific journal should be used, with complete references.

Oral Component

Upon approval of the Written component, the Oral is to be scheduled for completion by February 15. The Oral component is based on the Written component, but may also address related topics in the student’s Core graduate coursework. It consists of a ~25 minute presentation on the topic by the student, followed by questions from the Committee.

Possible Outcomes

The outcome of the Exam and an analysis of performance are provided to the student in a written feedback document. The possible outcomes are as follows:

1. Fail
2. Pass at the M.S. level: Advancement to M.S. Candidacy
3. Pass at the Ph.D. level: Advancement to Preliminary Ph.D. Candidacy

Upon passing the exam, students at the M.S. level must decide which track to pursue (Non-Thesis or Thesis). In addition, the Master’s Committee (at the M.S. level) or the Dissertation Committee (at the Ph.D. level) needs to be formed and be approved by the Department.

Re-examination

If the outcome of the Exam is not satisfactory, a second and final attempt can be undertaken. This would normally take place during the following year’s Exam sequence. Administration at an earlier date is possible if extenuating circumstances exist and if approved by the Department.

Early-examination

Incoming graduate students with graduate credits that have been transferred from another institution may petition the Graduate Committee to take the Comprehensive Exam during their first year.
Dissertation Research Proposal

Students who hold the preliminary Ph.D. candidacy are required to give an oral presentation on his or her proposed Dissertation research in front of the Dissertation Committee so that the Dissertation Committee can assess if the proposed research is appropriate to grant a Ph.D. degree when completed as proposed.

Content:
This examination is based on the content of the proposed Dissertation research of the Candidate. At the presentation, the Dissertation Committee may ask any questions, particularly those relating to the proposed Dissertation research areas of the candidate.

Administered:
This examination is administered by the Dissertation Committee at least one year prior to the expected term of graduation. However, it is recommended to have this examination done as soon as the outline of the research is formulated by the Candidate and his or her Research Advisor and preliminary results have been obtained.

Possible Outcome:
(1) Fail
(2) Pass: Advancement to final Ph.D. Candidacy
Thesis/Dissertation Defense

Students who hold the M.S./Ph.D. Candidacy are required to give an oral presentation on his or her Thesis/Dissertation research in front of the Dissertation Committee so that the Dissertation Committee can assess if the Thesis/Dissertation research has attained appropriate qualities for the degree being sought.

Content:

This examination is based on the content of Thesis/Dissertation presented by the Candidate. The Candidate gives a presentation on his or her Thesis/Dissertation in front of the Master's (for the M.S. level Thesis Track) or Dissertation (for the Ph.D. level) Committee. At the Defense, the Master's/Dissertation Committee may ask any questions, particularly those relating to the Thesis/Dissertation research areas of the candidate. For the Ph.D. level, at least one preferably first-author paper by the Candidate should have been published or accepted for publication (including preliminary acceptance with revision) in a peer-reviewed journal by the scheduled examination. For fields in which author lists are extremely long, being a major contributor but not first author on several peer-reviewed articles can be sufficient.

Administered:

This examination is administered by the Master's (for the M.S. level Thesis Track) or Dissertation (for the Ph.D. level) Committee at least three weeks before the end of the term in which the degree is to be granted. A copy of the Candidate's Thesis/Dissertation has to be provided to all members of the Committee at least two weeks prior to the scheduled examination. The examination is chaired by a faculty member outside the Physics and Astronomy Department who is approved by the Associate Vice Provost for Graduate Studies. The committee decides whether the Candidate's thesis or dissertation is acceptable as submitted or requires revisions. Information regarding the preparation of theses and dissertations can be obtained from the research advisor. All Candidates are expected to familiarize themselves with all the requirements by consulting the Graduate Bulletin and University Policies and Procedures regarding theses and dissertations.

Possible Outcome:

(1) Fail
(2) Pass: M.S./Ph.D. degree to be granted upon request
M.S. level Non-Thesis Track Exit Examination

Students on the M.S. level Non-Thesis Track are required to pass this oral examination as an exit examination upon completion of the required course work.

Content:
This examination is an exit exam, in which the Master's Committee may ask the Candidate any questions relating to the material covered in the Graduate Program. In general, the nature and level of problems in the examination are similar to Comprehensive Examination.

Administered:
This examination is administered by the Master’s Committee and has to be administered at least three weeks before the end of the term in which the degree is to be granted.

Possible Outcome:
(1) Fail
(2) Pass: M.S. degree to be granted upon request
Major: PHYSICS AND ASTRONOMY

Degree: PhD

Degree Requirements:
- 90 graduate-level quarter hours, of which a minimum of 60 must be in Physics and Astronomy
- Good academic standing: a GPA of 3.0 or higher
- No grades lower than C- are accepted toward the degree
- No more than one-fourth of the hours accepted toward the degree may be of C+, C, or C- grade

Non-Course Requirements:
- Regular attendance at the Physics and Astronomy Colloquia
- Presentation at the Physics and Astronomy Colloquia
- Comprehensive Examination
- Advancement to Preliminary Candidacy at the Ph.D. level
- Formation of the Dissertation Committee
- Dissertation Research Proposal
- Advancement to Candidacy at the Ph.D. level
- Dissertation
- Publication (or acceptance for publication) of a Preferably First-Author Paper in a Peer-Reviewed Journal
- Dissertation Defense

Course Requirements:
A minimum of 90 quarter hours including the Graduate Core Courses, which constitute 27 quarter hours.

Both 4000 (Graduate) and 3000 (Advanced Undergraduate) level courses may be applied toward the degree, with the approval of the Graduate Committee or the Master's/Dissertation Committee.
Major: PHYSICS AND ASTRONOMY

Degree: M.S.

Track: THESIS TRACK

Degree Requirements:
• 45 graduate-level quarter hours, of which a minimum of 30 must be in Physics and Astronomy
• Good academic standing: a GPA of 3.0 or higher
• No grades lower than C- are accepted toward the degree
• No more than one-fourth of the hours accepted toward the degree may be of C+, C, or C- grade

Non-Course Requirements:
• Regular attendance at the Physics and Astronomy Colloquia
• Presentation at the Physics and Astronomy Colloquia
• Comprehensive Examination
• Advancement to Candidacy at the M.S. level
• Formation of the Master's Committee
• Selection of a Master's Thesis Topic
• Master's Thesis
• Thesis Defense

Course Requirements:
A minimum of 45 quarter hours including the Graduate Core Courses, which constitute 27 quarter hours.

Both 4000 (Graduate) and 3000 (Advanced Undergraduate) level courses may be applied toward the degree, with the approval of the Graduate Committee or the Master's/Dissertation Committee.
Major: PHYSICS AND ASTRONOMY

Degree: M.S.

Track: NON-THESIS TRACK

Degree Requirements:
- 45 graduate-level quarter hours, of which a minimum of 30 must be in Physics and Astronomy
- Good academic standing: a GPA of 3.0 or higher
- No grades lower than C- are accepted toward the degree
- No more than one-fourth of the hours accepted toward the degree may be of C+, C, or C- grade

Non-Course Requirements:
- Regular attendance at the Physics and Astronomy Colloquia
- Presentation at the Physics and Astronomy Colloquia
- Comprehensive Examination
- Advancement to Candidacy at the M.S. level
- Formation of the Master's Committee
- Exit Examination - Oral Part

Course Requirements:

A minimum of 45 quarter hours including the Graduate Core Courses, which constitute 27 quarter hours.

Both 4000 (Graduate) and 3000 (Advanced Undergraduate) level courses may be applied toward the degree, with the approval of the Graduate Committee or the Master's/Dissertation Committee.