Chemical reactions driven by light are fundamental to biology and a source of inspiration for engineering materials to perform tasks such as solar energy harvesting and data storage. Observing and understanding photodynamics requires experimental tools capable of monitoring both atomic and electronic structure on ultrafast timescales. Time-resolved hard x-ray spectroscopies have proven valuable for these measurements due to their elemental specificity and sensitivity to geometric and electronic configuration. However, some of these techniques require intense x-ray beams and can only be performed at large facilities, e.g., synchrotrons and free-electron lasers, where experimental access is limited. In this talk we present a table-top apparatus capable of performing time-resolved x-ray spectroscopy with few-ps time resolution. By combining a compact laser-driven plasma source and a highly efficient array of microcalorimeter x-ray detectors, we have been able to observe photoinduced spin changes and photoreduction in different iron complexes. For example, we observe a prompt photoreduction in ferrioxalate, an observation that clarifies a long-running debate over the behavior of this material. Our results demonstrate that ultrafast hard x-ray spectroscopy is no longer confined to large facilities and now can be performed in conventional laboratories with 10 times better time resolution than at synchrotrons.