Astronomers now know of thousands of planets orbiting other stars in the Milky Way. The vast majority of these “exoplanets” are entirely invisible next to the glow of their bright stars. Yet, by making precise stellar brightness measurements (a centuries-old approach!), we can detect distant exoplanets as they transit in front of their stars and block some of their light. For such transiting exoplanets, we can determine planets’ orbits, sizes, masses, temperatures, and even the color of their sunsets. As astrophysical laboratories, transiting exoplanets allow us to probe planetary physics in diverse environments unlike any in our own Solar System. In this talk, I will present recent work on the discovery and characterization of new transiting exoplanets, with a particular focus on temperate, terrestrial planets transiting nearby, small stars. I will introduce beautiful data and new planets from the recently launched NASA Transiting Exoplanet Survey Satellite (TESS), and show how we’re using it to construct a map to the easiest-to-observe exoplanets in the entire sky.