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1 ABSTRACT

We consider the supply chain for containerized items that arrive at a port in the U.S. whose final destination is al-
so in the U.S. Ports are important entities in global supply chains. As such, when a port cannot operate because of
a crisis, such as a natural or man-made disaster, it is critical that freight flow is not disrupted. We develop a simu-
lation model that can be used to make effective re-routing decisions so that the time for freight to reach its final
destination is not significantly increased in a crisis. The simulation model will evaluate and report the perfor-
mance of the supply chain under different re-routing strategies. The output can be analyzed to find the best re-
routing strategy that minimizes congestion and delays during crisis conditions. The model can also be used by
various decision makers such as port managers, ocean carriers, or transportation companies for strategic decision
making.

2 INTRODUCTION

A wide variety of industries rely on efficient port operations to receive the raw materials for their businesses as
well as to ship their products to their customers. Natural catastrophes (e.g. earthquakes, hurricanes) and man-
made disasters (e.g. terrorist attacks, fires) negatively impact these industries due to delays in the flow of mate-
rials through the affected port in a supply chain. Impacts of crisis conditions, such as congestions and increase in
lead times, should be assessed to mitigate their negative effects on the performance of supply chains. The fact that
most of the supply chains are now tightly connected networks all around the world, intensifies the global impacts
of threats from natural disasters, terrorist attacks, wars, worker strikes, etc. However, recent studies show that the
majority of supply chains are incapable of dealing with crisis conditions, and have low level of disaster prepared-
ness (Lee 2004, Hale and Moberg 2005). Supply chain risk management is still an issue which is in infancy (Jutt-
ner 2005) as most of the U.S. companies ignore the importance of drawing up emergency plans for crisis condi-
tions (Lee 2004). Accordingly, the gap between theory and practice in disaster planning for supply chains is
highlighted by Tang (2006).

In this study, we describe a simulation model that can be used to effectively control freight transportation in
order to minimize supply chain disruptions during crisis conditions. The simulation model can be used to evaluate
the performance of supply chains that include ports as part of the chain. In our supply chain setting, freight going
to a crisis stricken port is re-routed to other ports. The objective is to minimize congestion and the increase in lead
times during crisis conditions. The main performance measure is the lead time, which is defined as the total time
the freight spends in the system from its origin to its final destination.

To demonstrate the use of the model we simulated and evaluated the performance of several ports in the U.S.
based on the following cases: (1) under normal conditions without any disruptions and (2) under crisis conditions
where one or more ports are affected by a disaster. The simulation model also enables the decision maker to per-
form what-if analyses by specifying different re-routing scenarios. Although one would expect a significant in-
crease in lead time when there is a crisis at a port, it is not clear if there are significant differences among various
re-routing strategies. Statistical analyses are conducted in order to evaluate whether or not there are significant
differences in the lead time under normal and crisis conditions, and also among various re-routing strategies. The
difference in lead time under several scenarios is estimated in Section 3.

The simulation model is flexible and user-friendly, and is developed using ProModel. The model is intended
for use by ocean carriers, logistic companies, port operators, and federal emergency management agencies. Using
the model requires no prior knowledge of simulation techniques. Since the model reads the input data from an Ex-
cel sheet, it is also very easy to change the data and run new scenarios with different supply chain dynamics.

2.1 Supply Chain Management during Crisis Conditions

The continuous flow of goods, information and money between different entities (such as retailers, wholesalers,
distributors, etc.) of a supply chain results in interaction. These interactions create mutual interdependencies be-
tween entities, making supply chains highly vulnerable to crisis conditions. Hence, entities of a supply chain are
not only susceptible to disruptions to their own operations but also to disruptions at upstream and downstream le-
vels (Sheffi 2001). In other words, a crisis at one of the supply chain entities, such as a port, could significantly



affect the operations of other entities in the supply chain even if they are not directly affected by the crisis itself.
For instance, 29 West Coast ports in the U.S. were disrupted for two weeks in 2002, and this resulted in a 1.1%
decrease in nominal gross domestic profit in Hong Kong, Malaysia and Singapore (Barnes et al. 2005). Therefore,
the ability to quickly adjust operations in response to sudden changes, referred to as agility, is very important. Ac-
cording to Lee (2004), efficient supply chains are not only time- and cost-effective, but also agile. Agility of
supply chain operations is a necessity to compensate for the vulnerable structure of the system resulting from in-
terdependencies. Therefore, if back-up plans and “what-if” analyses are performed prior to a disaster, the respon-
siveness of the supply chains during crisis conditions increases. However, it may not be practical to consider all
possible scenarios, therefore, simulation tools such as the one proposed here will help supply chains become more
agile and be ready for disruptions in advance.

Disaster preparedness and quick adjustments to sudden changes are critical issues since crisis conditions are
typically unpredictable. The simulation tool we have developed prepares the supply chains for disruptions at U.S.
ports, thereby enhancing the flexibility, agility and adaptability of supply chains during crisis conditions.

2.2 Port Operations

Ports are major intermodal facilities where multiple modes of transportation (rail, barge, trucks) meet. Crisis con-
ditions in and around ports will significantly impact port operations leading to undesired effects such as delays in
the flow of materials through the port.

The U.S. is the world’s largest importer and exporter, and the nation’s 361 seaports are the gateways for more
than 80% of the foreign trade (McCown 2005). In addition, all freight moving in, out, and within the U.S.
amounts to more than 15 billion tons annually, valued at over $9 trillion. Of the $9 trillion about $2 trillion is due
to international trade. It is estimated that the overall freight volumes will grow by more than 60% by 2020. “In the
same time interval, every major U.S. port is projected to at least double the volume of cargo it is expected to han-
dle” as argued by the report of National Chamber Foundation of the U.S. Chamber of Commerce (2003).

Although ports are critical transfer nodes in a supply chain, they usually are vulnerable to crisis conditions.
For instance, Biederman (2007) mentions a report by the U. S. Government Accountability Office (GAO) that in-
vestigated 17 ports in the U.S. According to this report, 12 out of these 17 ports were subjected to at least one hur-
ricane or earthquake since 1998, and 8 of them experienced problems in overcoming crisis conditions.

Computer simulation is not a new methodology used in maritime transportation networks to monitor and im-
prove the performance of port operations and the corresponding supply chains. We provide a few examples of si-
mulation studies of maritime transportation and logistics: Rensburg and He (2005) developed a simulation tool,
SimSea, to simulate transport of containers by container vessels. Valentine and Silva (2005) proposed an alterna-
tive approach in the simulation of large-scale maritime infrastructure systems and implemented the proposed ap-
proach in the port of Tanger. Sasso (2008) integrated Geographic Information Systems (GIS) with Arena simula-
tion software in order to simulate the transit of ocean-going vessels through the Panama Canal. Additionally, a
port modeling simulation with optimization capability of operational and economic performance measures was
developed by Dahal et al. (2003). Chang et al. (2005) simulated and evaluated the overall performance of bunker-
ing services at port of Kaohsiung. Cortes et al. (2004) simulated the freight traffic at Sevilla inland port. A wide
variety of simulation studies in maritime transportation and logistics systems are available in the literature. How-
ever, most of the studies analyze a given system at a micro level under normal conditions. In other words, most of
the simulation studies focus on a specific entity within a supply chain, and ignore crisis conditions. In our study,
we develop a simulation model for macro-level analyses. We consider the impact of crisis conditions on the
whole system by including upstream and downstream entities of the ports. A future extension of this work would
be to generalize the approach so that it could be applied to the existing port simulation models listed above. To do
so, further modeling and data collection would be required. For example, the severity of a crisis could be esti-
mated using the increase in lead time as a function of the increase in the number of containers a port receives.



3 METHODOLOGY

3.1 Procedures to Collect Data

As part of our data collection process we developed a survey to gather the following data. Since all research activ-
ities that involve surveying human subjects require Institutional Review Board (IRB) approval to ensure com-
pliance with federal regulations and ethical standards, we submitted our survey instrument to the IRB. After ob-
taining IRB approval, we contacted and visited several inland and coastal ports on the Gulf of Mexico in order to
collect data for the simulation model. The data consists of the following:

e The arrival process: Based on expert opinion and conversations with port managers, the arrivals of ships
to a port are assumed to follow a Poisson process. The numbers of containers on each ship is assumed to
be uniformly distributed between a low and a high value that the user defines.

e Source of containers: In the scenario we present as an example, it is assumed that containers are coming
from three sources: Asia, Europe, and South America. The arrival process of containers is defined for
each source-port pair.

o Port activities: These consist of setup operations such as docking, positioning of a ship, etc. and unload-
ing/loading containers. The setup time per ship and the unloading/loading time per container are assumed
to follow triangular distributions. The low, high, and most likely values are entered by the user. Also,
each port has a certain capacity that determines how many cranes can unload or load at any given time.

o Waiting time: This is the time a container spends at a port waiting for a truck or a train to pick it up for
delivery.

o Destination: The exact destination of a container can be easily tracked, but for our purposes the distance
that the container travels once it leaves the port is more important. Therefore, four destinations are de-
fined in our sample problem: (i) destinations that are within 100 miles, (ii) destinations that are between
100 and 300 miles, (iii) destinations that are between 300 and 600 miles, and (iv) destinations that are
beyond 600 miles.

e Mode of transportation: A container can potentially leave a port by truck, train, or barge. In our case we
ignore barges. Data were collected on the percentage of containers using each mode of transportation.

e Transportation capacity: The number of outbound trucks and trains that are available for each port is an
important factor in determining how well a port can react to a crisis condition. For example, following
Hurricane Katrina some ports had difficulty hiring truck drivers because they were able to make more
money hauling debris.

In addition, we asked port managers whether they have a contingency plan in a time of crisis. We were in-
formed about the details of the plans such as re-routing strategies or alternative plans that are preferred by the
ports during crisis conditions. We also investigated the publicly available online data on the web site of the Amer-
ican Association of Port Authorities <www.aapa-ports.org>. The online data gave us a general insight about the
operations of the ports that we were not able to contact and visit.

3.2  Simulation Model

The software package consists of two components: a MS Excel spreadsheet and a simulation model developed in
ProModel. The data we collected are stored in a spreadsheet, thus providing the user with easy access to the input
data that drives the model. The spreadsheet includes seven main components denoted by C as follows:
C1. Mean inter-arrival time of containers for each source-port pair
C2. Time it takes to complete operations (i.e. docking, positioning, overall setup of the ship, etc. ) at each
port
C3. Distribution of the number of containers per ship at a port
C4. Time it takes for loading/unloading a container at each port
C5. Final destinations of the containers after they leave the port
a. Percentage of containers whose final destination is within 100 miles
b. Percentage of containers whose final destination is between 100 and 300 miles



c. Percentage of containers whose final destination is between 300 and 600 miles
d. Percentage of containers whose final destination is beyond 600 miles
C6. Ports that are subject to crisis conditions
C7. Re-routing scenarios of the affected ports

Let N, M, and K denote the number of ports evaluated by the simulation model, the number of origins, and the
number of final destinations, respectively. All of the input components are represented as matrices in the input
spreadsheet, but they are stored as arrays in the simulation model. The first six components (C1 through C6) are
represented as single matrices in the spreadsheet. C1lisa N by M array, C2 isN by 3, C3is N by 2, C4is N by 3,
C5is N by K, and C6 is N by 1. In general, let (i,j) denote the entry in i row and j* column of an array. In C1,
(n,m) is the mean inter-arrival time of the ships from their origin m to port n. In C2, entries (n,1), (n,2) and (n,3)
are the parameters of the triangular distribution which represent low, most likely, and high values of the time re-
quired for port operations at port n, respectively. In C3, (n,1) and (n,2) are the parameters of the uniform distribu-
tion which denote the mean, and the half range of the number of containers per ship arriving to port n, respective-
ly. In C4, entries (n,1), (n,2) and (n,3) are the parameters of the triangular distribution which represent the low,
most likely, and high values of time required for unloading/loading a container at port n, respectively. In C5, (n,k)
is the percentage of containers that go from port n to the final destination k. C6 is a binary array: the entry in the
n™ row is 1 when there is a crisis condition at port n; and 0, otherwise. C7, the rerouting scenario array, consists of
M matrices of size N by N. Let (m,i,j) denote the entry in the i row and j" column of the m™ array in C7. So,
(m,i,j) represents the percentage of ships that are coming from source m and originally scheduled to arrive at port
i, but that are re-routed to the port j because of a crisis at port i. The sum of entries in each row of an array in C7
must be equal to 1. Figurel provides an example of a re-routing scenario array.

m MNew port destionation
& ] pab] ng 4 N5 Ng ny
% m 1 ] o0 0 0 0
£ | 0.25 O 075 0 0 0 0
8 s 0 0 1 o 0 o o0
"'gﬂ fig 0 1] O 0 0 o 0
ZE_: ns ] 0 o 0 0 o 0
3 | ng 0 0 0 o0 o0 0 o

7 i 0 00 0 0 0

Figure 1: Example of re-routing scenario array

Figure 1 shows port destinations of ships that are coming from source m; (m=1). In Figure 1, entry (1,2,1) =
0.25 means that 25% of ships that are coming from source m; and originally scheduled to arrive at port 2 (n,), are
re-routed to the port 1 (n,) because of a crisis at port n,. Similarly, 75% of the ships that are originally scheduled
to arrive at port n,, are re-routed to port n;. Note that (1,3,3) is one, which indicates that 100% of the ships origi-
nally scheduled to arrive at port ns are routed to ns.

After the user defines these required data components, the simulation model is run in order to evaluate the
performance of the supply chain. The resulting performance measures are reported by the simulation model in ac-
cordance with the specified re-routing scenario. In this study, the performance measure of interest is the total time
that a container spends in the system under different scenarios (i.e. no crisis conditions, crisis conditions with dif-
ferent re-routing scenarios including the option of minimal re-routing). Under a crisis condition, the user contin-
ues simulating and comparing the performance of the different re-routing strategies until a stopping criteria. The
stopping criteria can be either to simulate a fixed number of re-routing scenarios or to stop when a satisfying per-
formance measure defined by the customer is reached. This mechanism allows the user to perform ‘what if* ana-
lyses in order to search for the best re-routing scenario during crisis conditions.



3.2.1  System Description

The supply chain simulated in this study consists of the following three layers denoted by L. Containers move
from L1 to L3.

L1. Origin m from where containers arrive at the ports (m=1,2,...,M)

L2. Port n where containers are routed to (n=1,2,...,N)

L3. Final destination k of the containers (k=1,2,...,K)

When ships arrive at a port, they first join a queue (Q1) in order to gain access to the port. While in Q1 activi-
ties such as docking, positioning, and other setup operations will take place. The ship which has waited for the
longest time period leaves Q1 and enters the port. Once a ship enters the port, containers are unloaded off the ship
and/or loaded on the ship. Following the unloading/loading operations containers that are unloaded join queue
(Q2) where they wait for a resource (train or truck) that will transport them to their final destinations. When con-
tainers reach their final destination, they exit the system. Figure 2 illustrates this flow.

Departure from origin m

Containers are routed to the
l ports based on the re-routing
strategy defined by the user

Join a queue (Q1) to enter port n

!

Port activities at port n
(docking, positioning, etc)

L

Enter port n
Unloading/loading activities

Join a queue (Q2) to leave the Containers wait for a
port resource: truck or frain
Arrival to the final destination k

Exit the
simulation

Figure 2: Entity flow diagram of the containers in the supply chain

The system is simulated based on the following modeling assumptions:

1. Seven U.S. ports are considered; one port from each of the following states: California, Texas, Loui-
siana, Mississippi, Florida, New Jersey, and Massachusetts. These were selected because, according
to the American Association of Port Authorities statistics (2007), ports in these states are among the
busiest in the U.S. This information is obtained from 2007 U.S. port cargo tonnage rankings and
North America port container traffic statistics published by the American Association of Port Au-
thorities <www.aapa-ports.org>. However, other ports can easily be added to the model.

2. When containers arrive at a port, they may be required to wait before departing for their final destina-
tion. Since we aim to provide a general measure of the supply chain’s performance under different re-
routing scenarios, we assume that containers go to one of four destinations, grouped as (i) within 100
miles, (ii) between 100 and 300 miles, (iii) between 300 and 600 miles, and (iv) beyond 600 miles.

3. Itis assumed that ships/containers are coming to ports from three sources: Pacific Ocean (from Asia),
Atlantic Ocean (from Europe), and Gulf of Mexico (from South America). In the simulation model,



3.2.2

ships coming from the same origin can be routed to different ports. The re-routing of the ships during
crisis conditions is performed based on the percentages contained in C7 of the system’s input sheet .

4. When containers leave a port, they are transported by either train or truck. It is assumed that, if a con-
tainer is going to a destination within 300 miles, it is transported by a truck; otherwise, it is trans-
ported by a train. It is also assumed that one truck carries two containers and one train carries twenty
containers. For example, from the port in California, containers are transported to the Southwest part
of the U.S. by trucks, to the Midwest by trains, and to the Northeast by trains. When a container is at
a port in Texas, Louisiana, Mississippi, or Florida, transportation to the Southwestern and Northeas-
tern parts of the U.S. is performed by train, and transportation to the Midwest is done by trucks. For
ports in New Jersey and Massachusetts, containers are delivered to the Northeastern part of the U.S.
by trucks, to the Midwestern and Southwestern parts of the U.S. by trains.

Main Elements of the Simulation Model

Figure 3 illustrates the general framework of our simulation study and Figure 4 provides a snapshot of the simula-
tion model layout.

Input Data Simulation Model

Figure 3: Framework of the simulation

In ProModel terms, the model contains the following constructs.

Entities: There is only one entity type, container, in the simulation model.

Locations (static resources): Seven ports, two queues for each port, three origins, and four final destina-
tions are considered in the simulation. A total of 28 locations are used in the simulation model.

Arrivals: Since ship arrivals to a port follow a Poisson process, the inter-arrival times are exponentially
distributed. Mean inter-arrival times of containers for each port are defined in the spreadsheet (component
C1 of the input). As stated above, C1 is N by M matrix, where N=7 and M=3 in our supply chain setting.
Attribute: Container’s intended port of entry.

Arrays: Clis a 7 by 3 array containing the inter-arrival times of the containers from their origin to the
ports, C2 is a 7 by 3 array of port operations time (docking, positioning of a ship, etc.) at each port, C3 is
a 7 by 2 array containing the parameters of the uniform distribution which denote the mean, and the half
range of the number of containers per ship arriving at each port, C4 is a 7 by 3 array of unloading/loading
time at each port, C5 is a 7 by 4 array of the percentage of the containers going from a port to the four
possible final destinations, and C7 is composed of three 7 by 7 arrays which represent the re-routing sce-
narios.



Figure 4: A snapshot of the simulation model layout
3.2.3  Simulation of Crisis Conditions

When one or several ports are subject to a crisis, re-routing scenarios are considered for the containers of the af-
fected ports. This re-routing mechanism influences the flow of containers from their origin to the ports, and from
the ports to their final destinations. Figure 5 illustrates the general flow of the containers between different layers
of the supply chain. Re-routing changes the ways that containers move on Arcl, and on Arc2. As explained be-
low, the simulation model considers two different algorithms for the re-routings on Arcl and Arc2.

Origin Arci Port Arc2 F! gl .
 — Destination

Figure 5: Re-routing affect the flow of containers at Arc1 and Arc2

1. Re-routing the flow of containers from their origins to the ports (Arcl)

As soon as an arrival of a container is generated by the simulation model, an attribute called Origi-
nalPort is assigned to each container. This attribute indicates the port destination of the container.
Even if the containers of the affected port are re-routed to another port, information about the original
port of the re-routed containers are not lost. If there is no crisis condition in the original port, then the
container is sent to that port. Otherwise, the re-routing scenario defined by the user in input array C7
is applied by the simulation model, and the containers of the affected port are re-routed based on that
re-routing scenario. This process is illustrated in Figure 6.
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Figure 6: Flowchart for re-routing containers on Arcl

2. Re-routing the flow of containers from the ports to their final destination (Arc2)

Recall, the input component C7, (m,i,j) defines a re-routing scenario for the containers of the affected
port i. Similarly, in input array C5 the user defines the final destination for the containers of each port.
During a crisis condition, even if the containers of the affected port i are re-routed to an alternative
port j, the containers of the port i are sent to their final destination by considering the final destination
definitions of port i while they are at port j. The flow of the containers on Arc2 is illustrated in Figure
7. Additionally, if a container leaves the port on a train then it waits in Q2 until twenty containers are
accumulated, otherwise two containers are transported by a truck.
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Figure 7: Flowchart for re-routing containers on Arc2

4 TEST AND MEASUREMENT

4.1 Performance Measure

The total time that a container spends in the system is considered as the main measure of our supply chain’s per-
formance. This represents the time interval between the arrival of a container to the system from its origin, until it
exits the simulation by reaching its final destination. That is, the performance measure is the lead time of the con-
tainers. In this study, the lead time under different re-routing scenarios is analyzed and statistically compared in
order to evaluate the performance of the supply chain. Lead time of the containers is affected by the following
four components:

1.

2.

4.

Maritime transportation time: time required to transport containers from their origin to the ports. In
case of a crisis, the maritime transportation time of containers may increase due to re-routing.

Setup and operational time: time spent for docking, positioning, unloading/loading, and other port
activities. During a crisis the setup and operational times will typically increase not only at the port
directly affected by the crisis but also at other ports.

Inland transportation time: time interval between the departure of the containers from a port and
their arrival at the final destination. Inland transportation time depends on two parameters: the mode
of transportation due to its speed (train or truck) and the distance traveled.

Waiting time: total time a container spends at Q1 (queue to enter the port), and Q2 (queue where
they are stored to be picked up by a train or truck). When the freight of an affected port is re-routed,
congestion at the alternative port can be engendered due to capacity limitations. For example, limited
capacity of the storage area (Q2) may block the port operations, and consequently increase the wait-
ing time at Q1. The capacity constraints of a port are the maximum number of ships that can be un-
loaded/loaded at a given time and the capacity of the storage area Q2. The waiting time in Q2 is pri-
marily affected by the availability of trucks and trains that transport containers to their final
destinations. For example, following hurricane Katrina port managers reported having difficulty find-
ing truckers to carry their cargo. This was due to the fact that truckers were able to receive better pay
hauling debris rather than transporting containers. In the scenarios we simulate, it is assumed that the
number of available trains and trucks is unlimited.
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4.2  Statistical Analyses: An Example

The results and statistical analyses provided in this section demonstrate how the simulation model can be used by
various decision makers such as port managers, ocean carriers, transportation companies, or customers (i.e. indus-
trial firms). The use of the model is not only limited to re-routing decisions in crisis conditions, but it can also be
used by container carriers to determine which ports they should utilize and how much capacity they should allo-
cate to each port.

In our example problem a port in Texas (TX) is subject to a crisis condition. The following five scenarios are si-
mulated to measure the performance of the system:

1. Scenario 0 (Normal or Base Scenario): In this case we assume that all ports are operating under normal

conditions without any crisis.

2. Scenario 1: 25% of the ships coming from the Pacific Ocean that were originally destined to Texas (TX)

are re-routed to California (CA) and the remaining 75% are re-routed to Louisiana (LA). Additionally,
75% of the ships coming from the Gulf of Mexico that were originally destined to TX are re-routed to
CA and the remaining 25% to LA. Since the traffic at the CA and LA ports are higher due to re-routing,
the processing of containers at these ports take longer.

3. Scenario 2: 75% of the ships coming from the Pacific Ocean that were originally destined to TX are re-

routed to CA and the remaining 25% to LA. Additionally, 25% of the ships coming from the Gulf of
Mexico that were originally destined to TX are re-routed to CA and the remaining 75% to LA. Since the
traffic at the CA and LA ports are higher due to re-routing, the processing of containers at these ports
take longer.

4. Scenario 3: 25% of the ships coming from all sources that were originally destined to TX are re-routed to

CA, another 25% to LA, and the remaining 50% still go to TX. However, the time required for port oper-
ations at Texas increases due to the impacts of the crisis.

5. Scenario 4: 50% of the ships coming from all sources that were originally destined to TX are re-routed to

CA and the remaining 50% to LA.

Data used in the above scenarios are based on information gathered from port officials with whom we visited.
Thus, the input data is realistic. Each scenario is replicated 30 times and each replication is simulated for 195
hours of which 150 hours corresponds to the warm-up period. When simulating different scenarios common ran-
dom numbers are used. The warm up period is chosen to be 150 hours after simulating the normal case for 300
hours and analyzing the performance of the system. At the end of 300 hours of simulation, we plotted the average
time a container spends in the system, and observed that the system reached steady state after about 150 hours of
simulation. As we will show later, we performed statistical analyses on the average time a container spends in the
system. Each scenario is replicated 30times so that the distribution of each of the means is approximately normal-
ly distributed .

The results of the simulation study are summarized in Table 1, which shows the mean percentage increase in
the corresponding performance measure with respect to the “Normal Scenario.” For example, the average number
of containers in Q1 in California under scenario 1 increased by 64.9% compared to the normal scenario. As ex-
pected, the average length of Q1 in California and Louisiana increased under all four scenarios. Note that the
length of Q1 in Texas became zero under scenarios 1, 2, and 4 because all ships destined for Texas are re-routed
to other ports under these three scenarios. However, under scenario 3, only 50% of the ships are re-routed; thus,
the average size of Q1 decreases by 53.3% rather than 100%. As can be seen from Table 1, the size of Q2 did not
change as much as Q1. This is due to the assumption related to the number of trucks and trains. In simulating the
five scenarios it was assumed that the number of trucks and trains available to transport containers is very large.
Therefore, containers in Q2 are quickly picked up by a truck or a train.
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Table 1: Mean percentage change in average queue length and lead time

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Average queue length (Q1 in CA) 64.9 80.4 45.6 83.2
Average queue length (Q1 in LA) 100.0 172.3 69.1 130.8
Average queue length (Q1 in TX) -100.0 -100.0 -53.3 -100.0
Average queue length (Q2 in CA) 25 35 1.8 2.1
Average queue length (Q2 in LA) 15 4.9 -0.6 1.2
Average queue length (Q2 in TX) -100.0 -100.0 -3.4 -100.0
Average time in system (lead time) 1.2 -0.2 0.2 0.4

Table 1 also shows the percent change in the average time a container spends in the system. For example, un-
der scenario 1 each container spent an average of 9500 minutes (see Table 2) in the system whereas the lead time
was about 9390 minutes under the normal scenario corresponding to an increase of 1.2%. The increase under sce-
narios 3 and 4 compared to the normal case were 0.2% and 0.4%, respectively. Under scenario 2, however, con-
tainers actually spent less time on the average in the system compared to the normal scenario. In the following pa-
ragraphs an explanation for this decrease in lead time is provided.

To determine the significance of these changes statistical tests were performed. The average time a container
spends in the system under each scenario (based on 30 replications) were collected. Pair-wise comparisons of the
means were performed for each possible pair out of five scenarios, leading to a total of 10 tests. As can be seen
from Table 2, the sample variances were quite different for different scenarios. Therefore, we assume that the
population variances are unequal. Based on this assumption, Welch’s t-test was the most appropriate statistical
test to use. Before performing the t-tests, goodness of fit tests for normality were executed to evaluate if the as-
sumptions of the t-test are valid for the output data. Kolmogorov-Smirnov and Anderson-Darling tests were per-
formed on the observations collected from each scenario for this purpose. As the p-values in Table 3 indicate, the
distribution of the observations are not significantly different from the normal distribution.

Table 2: Pair-wise comparisons of the lead time

Normal Scenariol Normal Scenario2 Normal Scenario 3 Normal Scenario 4

Mean 9390.47 9500.38 9390.47 9370.33 9390.47 9408.12 9390.47 9424.87
Variance 3048.50 6107.90 3048.50 2090.97 3048.50 3570.21 3048.50 3415.94
Hypothesized Mean Difference 0 0 0 0
df 52 56 58 58
t Critical two-tail 2.007 2.003 2.002 2.002
t Stat -6.291 1.539 -1.188 -2.343
P(T<=t) two-tail 0.000 0.129 0.240 0.023

Scenariol Scenario2 Scenariol Scenario 3 Scenariol Scenario 4

Mean 9500.38 9370.33 9500.38 9408.12 9500.38 9424.87
Variance 6107.90 2090.97 6107.90 3570.21 6107.90 3415.94
Hypothesized Mean Difference 0 0 0
df 47 54 54
t Critical two-tail 2.012 2.005 2.005
t Stat 7.867 5.137 4.238
P(T<=t) two-tail 0.000 0.000 0.000
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Scenario2 Scenario 3 Scenario2 Scenario 4 Scenario 3 Scenario 4

Mean 9370.33 9408.12 9370.33 9424.87 9408.12 9424.87
Variance 2090.97 3570.21 2090.97 341594 3570.21 3415.94
Hypothesized Mean Difference 0 0 0
df 54 55 58
t Critical two-tail 2.005 2.004 2.002
t Stat -2.751 -4.026 -1.098
P(T<=t) two-tail 0.008 0.000 0.277

Table 2 provides the results of the t-tests. All tests were performed at the 5% significance level. As can be
seen from the p-values in Table 2 there is no significant difference in the average time a container spends in the
system under the normal scenario versus scenarios 2 and 3. This indicates that the 1.2% increase in average lead
time under scenario 1 compared to the normal scenario, although small, is statistically significant. Similarly, the
0.4% increase in lead time under scenario 4 compared to the normal scenario is also significant. These results are
encouraging because the increase in lead time, although statistically significant, has not drastically increased in
our example. Clearly, this will depend on the severity of the disaster and the model assumptions, but it is interest-
ing to see that through effective re-routing the increase in lead time can be kept small. As a matter of fact, the lead
time under scenario 2 was actually slightly smaller compared to the normal scenario. This might indicate that the
port in Texas was already too busy even before the crisis, and by re-routing the ships we were able to reduce the
average time a container spends in the system. While the t-test indicates that this difference in lead time is insigni-
ficant, it provides a good illustration of how the simulation model can be used for strategic decision making pur-
poses by transportation companies, ocean carriers, and industrial firms. It can also be seen from Table 2 that the
time a container spends in the system is statistically different for all pair wise comparisons of scenarios 1, 2, 3,
and 4 except for one pair (i.e., scenario 3 vs. scenario 4).

Table 3: Output analyses: test for normality

Kolmogorov Anderson
Smirnov Darling
Scenario 1 0.820 0.824
Scenario 2 0.887 0.968
Scenario 3 0.973 0.988
Scenario 4 0.570 0.672
Scenario 5 0.992 0.994

5 CONCLUSION AND FUTURE RESEARCH

Ports are critical transfer nodes of a supply chain because they are vulnerable to crisis conditions. The simulation
tool developed in this study enables decision makers to prepare for possible crises at U.S. ports by providing a ca-
pability to analyze ways to adjust to sudden changes. The simulation model captures and presents the general be-
havior of complex supply chain interactions, both under normal conditions and under different user-defined re-
routing scenarios. This study demonstrates how simulation can be used to mitigate the impact of crisis conditions
on the performance of supply chains. The simulation tool can be used to estimate the performance of the U.S.
supply chains at a macro level, and to prepare supply chains for disruptions through “what if” analyses. This ma-
cro view can also improve the effectiveness of strategic decisions made by ocean container carriers, logistics
companies, federal emergency management agencies, and port operators.

Future enhancements to this simulation tool could include the integration of optimization methodologies . In-
stead of what-if analyses, simulation optimization and heuristic optimization could be employed to find the “best”
re-routing strategy that minimizes the increase in lead time and congestion during crisis conditions. Additionally,
the severity of the crisis can be quantified. For example, a function can be developed that estimates change in se-
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tup and operational times with respect to the change in the number of containers a port receives. However, further
modeling and data collection would be required to expand this study.
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APPENDIX
Interview Questions
The National Center for Intermodal Transportation

Project Title: A Simulation Model to Analyze the Impact of Crisis Conditions on the Performance of Port
Operations

1. Containers:
How many TEUs arrive at your port in a day/month/year?

We receive about TEUs from Asia in a day/month/year.
We receive about TEUs from South America in a day/month/year.
We receive about TEUs from Europe in a day/month/year.

Are the shipments relatively stable throughout the year or is there seasonality?
What percent of the operations at your port involve TEUs/breakbulk/other?
2. Capacity:
At most how many TEUs can be held at the port at any given time?
What is the capacity of the storage area where TEUs wait for an availaible train or truck in order to leave the
port for their final destination?
On average how many TEUSs can a ship carry?
At most how many ships can be loading or unloading at any given time?
At most how many ships can be waiting to load/unload?
How long does it take to load/unload a TEU?

It would take us at least minutes/hours to load/unload one TEU.
It would take us on average minutes/hours to load/unload one TEU.
It would take us at most minutes/hours to load/unload one TEU.

How long would a TEU wait at the port to be picked up by a truck/train/barge?
Is the waiting time due to availability of trucks/trains/barges?

3. Destination:
Where do the TEUs go after they leave the port?

About % of the TEUs that we receive go to destinations that are within 100 miles.
Of this quantity about % travels on trucks.
Of this quantity about % travels on rail.
Of this quantity about % travels on barges.
About % of the TEUs that we receive go to destinations that are within 100 to 300 miles.
Of this quantity about % travels on trucks.
Of this quantity about % travels on rail.
Of this quantity about % travels on barges.
About percent of the TEUs that we receive go to destinations that are within 300 to 600 miles.
Of this quantity about % travels on trucks.
Of this quantity about % travels on rail.
Of this quantity about % travels on barges.
About percent of the TEUSs that we receive go to destinations that are beyond 600 miles.
Of this quantity about % travels on trucks.
Of this quantity about % travels on rail.
Of this quantity about % travels on barges.

What is the estimated time for TEUs to reach their destination after they leave the port?
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It would take approximately hours for a truck to reach a destination that is about 100
miles away from the port.

It would take approximately hours for a train to reach a destination that is about 100 miles
away from the port.
It would take approximately hours for a barge to reach a destination that is about 100

miles away from the port.

4. Crisis Conditions:
Under a crisis condition (e.g., a hurricane, a terrorist attack, a strike), what happens to your capacity to handle
TEUS?
If it is a minor crisis it would increase the time a TEU spends at the port by only %.
If it is a major crisis we would shut down for a few days which would increase the time a TEU spends at
the port by about %.
If you receive more TEUs than usual how would your service time change? (When answering this question
assume that you do not have enough time to significantly increase your capacity)
If we received 2000 additional TEUs a day then the time a TEU spends at the port would increase by
about %.
If we received 4000 additional TEUs a day then the time a TEU spends at the port would increase by
about %.
If we received 6000 additional TEUs a day then the time a TEU spends at the port would increase by
about %.
5. Can you provide a copy of the port tariff?
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