MEMS Aerosol Impactor

James C. Wilson, Siavash Pourkamali Anaraki

Summary: This invention includes aerosol impactors with micromechanical resonators.

Description: Microelectromechanical system (MEMS) oscillators are devices that generate highly stable reference frequencies. This MEMS aerosol impactor can provide size classifications and/or concentration of landing aerosol particulates. Aerosol impactors use an air flow device, such as a pump, to create a constant flow of air. This allows for the mass measurement of micro/nanoscale particles landing on the surface by measuring the frequency change of the micromechanical resonator.

Advantages of this Invention: MEMS resonators can be integrated into arrays to provide mass sensitivity in a small, lightweight, and cost effective package.

- Can be constructed in a portable, wearable package allowing particulates to be measured in real time
- Ability to measure at the micro/nanoscale
- Fabricated from silicon layers

Potential Areas of Application: Industrial or scientific applications to monitor the concentration of airborne particulates.

- Airborne particles affects air quality, human health, and atmosphere visibility
- For example, measuring could be used to measure particulates in scientific laboratories, mining sites, and air quality generally
- Used in conjunction with existing and future technologies

Intellectual Property Status: Patent No. 10,203,272

For more information contact:

CeCe Ging, Manager, Office of Intellectual Property and Technology Transfer
Techtransfer@du.edu | 303-871-4230 | 2601 E. Colorado Avenue Denver, CO 80208